Metamath Proof Explorer


Theorem pntlemh

Description: Lemma for pnt . Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
Assertion pntlemh φ J M N X < K J K J Z

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 12 simpld φ X +
19 18 adantr φ J M N X +
20 19 relogcld φ J M N log X
21 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
22 21 simp2d φ K +
23 22 rpred φ K
24 21 simp3d φ E 0 1 1 < K U E +
25 24 simp2d φ 1 < K
26 23 25 rplogcld φ log K +
27 26 adantr φ J M N log K +
28 20 27 rerpdivcld φ J M N log X log K
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φ M N M log Z log K 4 N M
30 29 simp1d φ M
31 30 adantr φ J M N M
32 31 nnred φ J M N M
33 elfzuz J M N J M
34 eluznn M J M J
35 30 33 34 syl2an φ J M N J
36 35 nnred φ J M N J
37 flltp1 log X log K log X log K < log X log K + 1
38 28 37 syl φ J M N log X log K < log X log K + 1
39 38 16 breqtrrdi φ J M N log X log K < M
40 elfzle1 J M N M J
41 40 adantl φ J M N M J
42 28 32 36 39 41 ltletrd φ J M N log X log K < J
43 20 36 27 ltdivmul2d φ J M N log X log K < J log X < J log K
44 42 43 mpbid φ J M N log X < J log K
45 22 adantr φ J M N K +
46 elfzelz J M N J
47 46 adantl φ J M N J
48 relogexp K + J log K J = J log K
49 45 47 48 syl2anc φ J M N log K J = J log K
50 44 49 breqtrrd φ J M N log X < log K J
51 45 47 rpexpcld φ J M N K J +
52 logltb X + K J + X < K J log X < log K J
53 19 51 52 syl2anc φ J M N X < K J log X < log K J
54 50 53 mpbird φ J M N X < K J
55 49 oveq2d φ J M N 2 log K J = 2 J log K
56 2z 2
57 relogexp K J + 2 log K J 2 = 2 log K J
58 51 56 57 sylancl φ J M N log K J 2 = 2 log K J
59 2cnd φ J M N 2
60 36 recnd φ J M N J
61 45 relogcld φ J M N log K
62 61 recnd φ J M N log K
63 59 60 62 mulassd φ J M N 2 J log K = 2 J log K
64 55 58 63 3eqtr4d φ J M N log K J 2 = 2 J log K
65 elfzle2 J M N J N
66 65 adantl φ J M N J N
67 66 17 breqtrdi φ J M N J log Z log K 2
68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
69 68 simp1d φ Z +
70 69 adantr φ J M N Z +
71 70 relogcld φ J M N log Z
72 71 27 rerpdivcld φ J M N log Z log K
73 72 rehalfcld φ J M N log Z log K 2
74 flge log Z log K 2 J J log Z log K 2 J log Z log K 2
75 73 47 74 syl2anc φ J M N J log Z log K 2 J log Z log K 2
76 67 75 mpbird φ J M N J log Z log K 2
77 2re 2
78 77 a1i φ J M N 2
79 2pos 0 < 2
80 79 a1i φ J M N 0 < 2
81 lemuldiv2 J log Z log K 2 0 < 2 2 J log Z log K J log Z log K 2
82 36 72 78 80 81 syl112anc φ J M N 2 J log Z log K J log Z log K 2
83 76 82 mpbird φ J M N 2 J log Z log K
84 remulcl 2 J 2 J
85 77 36 84 sylancr φ J M N 2 J
86 85 71 27 lemuldivd φ J M N 2 J log K log Z 2 J log Z log K
87 83 86 mpbird φ J M N 2 J log K log Z
88 64 87 eqbrtrd φ J M N log K J 2 log Z
89 rpexpcl K J + 2 K J 2 +
90 51 56 89 sylancl φ J M N K J 2 +
91 90 70 logled φ J M N K J 2 Z log K J 2 log Z
92 88 91 mpbird φ J M N K J 2 Z
93 70 rprege0d φ J M N Z 0 Z
94 resqrtth Z 0 Z Z 2 = Z
95 93 94 syl φ J M N Z 2 = Z
96 92 95 breqtrrd φ J M N K J 2 Z 2
97 51 rprege0d φ J M N K J 0 K J
98 70 rpsqrtcld φ J M N Z +
99 98 rprege0d φ J M N Z 0 Z
100 le2sq K J 0 K J Z 0 Z K J Z K J 2 Z 2
101 97 99 100 syl2anc φ J M N K J Z K J 2 Z 2
102 96 101 mpbird φ J M N K J Z
103 54 102 jca φ J M N X < K J K J Z