| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
|
pntlem1.y |
|
| 12 |
|
pntlem1.x |
|
| 13 |
|
pntlem1.c |
|
| 14 |
|
pntlem1.w |
|
| 15 |
|
pntlem1.z |
|
| 16 |
|
pntlem1.m |
|
| 17 |
|
pntlem1.n |
|
| 18 |
|
pntlem1.U |
|
| 19 |
|
pntlem1.K |
|
| 20 |
|
pntlem1.o |
|
| 21 |
|
breq2 |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
breq1d |
|
| 24 |
21 23
|
anbi12d |
|
| 25 |
|
id |
|
| 26 |
25 22
|
oveq12d |
|
| 27 |
26
|
raleqdv |
|
| 28 |
24 27
|
anbi12d |
|
| 29 |
28
|
cbvrexvw |
|
| 30 |
|
breq1 |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
breq2d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
33
|
anbi1d |
|
| 35 |
34
|
rexbidv |
|
| 36 |
29 35
|
bitrid |
|
| 37 |
19
|
adantr |
|
| 38 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
| 39 |
38
|
simp2d |
|
| 40 |
|
elfzoelz |
|
| 41 |
|
rpexpcl |
|
| 42 |
39 40 41
|
syl2an |
|
| 43 |
42
|
rpred |
|
| 44 |
|
elfzofz |
|
| 45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
| 46 |
44 45
|
sylan2 |
|
| 47 |
46
|
simpld |
|
| 48 |
12
|
simpld |
|
| 49 |
48
|
adantr |
|
| 50 |
|
rpxr |
|
| 51 |
|
elioopnf |
|
| 52 |
49 50 51
|
3syl |
|
| 53 |
43 47 52
|
mpbir2and |
|
| 54 |
36 37 53
|
rspcdva |
|
| 55 |
2
|
ad2antrr |
|
| 56 |
3
|
ad2antrr |
|
| 57 |
4
|
ad2antrr |
|
| 58 |
7
|
ad2antrr |
|
| 59 |
8
|
ad2antrr |
|
| 60 |
11
|
ad2antrr |
|
| 61 |
12
|
ad2antrr |
|
| 62 |
13
|
ad2antrr |
|
| 63 |
15
|
ad2antrr |
|
| 64 |
18
|
ad2antrr |
|
| 65 |
19
|
ad2antrr |
|
| 66 |
|
simprl |
|
| 67 |
|
simprr |
|
| 68 |
|
simplr |
|
| 69 |
|
eqid |
|
| 70 |
1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69
|
pntlemj |
|
| 71 |
54 70
|
rexlimddv |
|