Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|
2 |
|
pntlem1.a |
|
3 |
|
pntlem1.b |
|
4 |
|
pntlem1.l |
|
5 |
|
pntlem1.d |
|
6 |
|
pntlem1.f |
|
7 |
|
pntlem1.u |
|
8 |
|
pntlem1.u2 |
|
9 |
|
pntlem1.e |
|
10 |
|
pntlem1.k |
|
11 |
|
pntlem1.y |
|
12 |
|
pntlem1.x |
|
13 |
|
pntlem1.c |
|
14 |
|
pntlem1.w |
|
15 |
|
pntlem1.z |
|
16 |
|
pntlem1.m |
|
17 |
|
pntlem1.n |
|
18 |
|
pntlem1.U |
|
19 |
|
pntlem1.K |
|
20 |
|
pntlem1.o |
|
21 |
|
pntlem1.v |
|
22 |
|
pntlem1.V |
|
23 |
|
pntlem1.j |
|
24 |
|
pntlem1.i |
|
25 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
26 |
25
|
simp3d |
|
27 |
26
|
simp3d |
|
28 |
1 2 3 4 5 6
|
pntlemd |
|
29 |
28
|
simp1d |
|
30 |
25
|
simp1d |
|
31 |
29 30
|
rpmulcld |
|
32 |
|
8nn |
|
33 |
|
nnrp |
|
34 |
32 33
|
ax-mp |
|
35 |
|
rpdivcl |
|
36 |
31 34 35
|
sylancl |
|
37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
38 |
37
|
simp1d |
|
39 |
38
|
rpred |
|
40 |
37
|
simp2d |
|
41 |
40
|
simp1d |
|
42 |
39 41
|
rplogcld |
|
43 |
36 42
|
rpmulcld |
|
44 |
27 43
|
rpmulcld |
|
45 |
44
|
rpred |
|
46 |
|
fzfid |
|
47 |
24 46
|
eqeltrid |
|
48 |
|
hashcl |
|
49 |
47 48
|
syl |
|
50 |
49
|
nn0red |
|
51 |
27
|
rpred |
|
52 |
38 21
|
rpdivcld |
|
53 |
52
|
relogcld |
|
54 |
53 52
|
rerpdivcld |
|
55 |
51 54
|
remulcld |
|
56 |
50 55
|
remulcld |
|
57 |
|
fzfid |
|
58 |
20 57
|
eqeltrid |
|
59 |
7
|
rpred |
|
60 |
59
|
adantr |
|
61 |
25
|
simp2d |
|
62 |
|
elfzoelz |
|
63 |
23 62
|
syl |
|
64 |
63
|
peano2zd |
|
65 |
61 64
|
rpexpcld |
|
66 |
38 65
|
rpdivcld |
|
67 |
66
|
rprege0d |
|
68 |
|
flge0nn0 |
|
69 |
|
nn0p1nn |
|
70 |
67 68 69
|
3syl |
|
71 |
|
elfzuz |
|
72 |
71 20
|
eleq2s |
|
73 |
|
eluznn |
|
74 |
70 72 73
|
syl2an |
|
75 |
60 74
|
nndivred |
|
76 |
38
|
adantr |
|
77 |
74
|
nnrpd |
|
78 |
76 77
|
rpdivcld |
|
79 |
1
|
pntrf |
|
80 |
79
|
ffvelrni |
|
81 |
78 80
|
syl |
|
82 |
81 76
|
rerpdivcld |
|
83 |
82
|
recnd |
|
84 |
83
|
abscld |
|
85 |
75 84
|
resubcld |
|
86 |
77
|
relogcld |
|
87 |
85 86
|
remulcld |
|
88 |
58 87
|
fsumrecl |
|
89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
pntlemr |
|
90 |
55
|
recnd |
|
91 |
|
fsumconst |
|
92 |
47 90 91
|
syl2anc |
|
93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
pntlemq |
|
94 |
90
|
ralrimivw |
|
95 |
58
|
olcd |
|
96 |
|
sumss2 |
|
97 |
93 94 95 96
|
syl21anc |
|
98 |
92 97
|
eqtr3d |
|
99 |
55
|
adantr |
|
100 |
99
|
adantlr |
|
101 |
|
0red |
|
102 |
100 101
|
ifclda |
|
103 |
|
breq1 |
|
104 |
|
breq1 |
|
105 |
27
|
rpregt0d |
|
106 |
105
|
adantr |
|
107 |
106
|
simpld |
|
108 |
|
1rp |
|
109 |
|
rpaddcl |
|
110 |
108 31 109
|
sylancr |
|
111 |
110 21
|
rpmulcld |
|
112 |
38 111
|
rpdivcld |
|
113 |
112
|
rprege0d |
|
114 |
|
flge0nn0 |
|
115 |
|
nn0p1nn |
|
116 |
113 114 115
|
3syl |
|
117 |
|
elfzuz |
|
118 |
117 24
|
eleq2s |
|
119 |
|
eluznn |
|
120 |
116 118 119
|
syl2an |
|
121 |
120
|
nnrpd |
|
122 |
121
|
relogcld |
|
123 |
122 120
|
nndivred |
|
124 |
107 123
|
remulcld |
|
125 |
93
|
sselda |
|
126 |
125 87
|
syldan |
|
127 |
|
simpr |
|
128 |
127 24
|
eleqtrdi |
|
129 |
|
elfzle2 |
|
130 |
128 129
|
syl |
|
131 |
52
|
rpred |
|
132 |
131
|
adantr |
|
133 |
128
|
elfzelzd |
|
134 |
|
flge |
|
135 |
132 133 134
|
syl2anc |
|
136 |
130 135
|
mpbird |
|
137 |
120
|
nnred |
|
138 |
|
ere |
|
139 |
138
|
a1i |
|
140 |
112
|
rpred |
|
141 |
140
|
adantr |
|
142 |
138
|
a1i |
|
143 |
38
|
rpsqrtcld |
|
144 |
143
|
rpred |
|
145 |
40
|
simp2d |
|
146 |
111
|
rpred |
|
147 |
65
|
rpred |
|
148 |
22
|
simpld |
|
149 |
148
|
simprd |
|
150 |
61
|
rpcnd |
|
151 |
61 63
|
rpexpcld |
|
152 |
151
|
rpcnd |
|
153 |
150 152
|
mulcomd |
|
154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|
155 |
154
|
simp1d |
|
156 |
|
elfzouz |
|
157 |
23 156
|
syl |
|
158 |
|
eluznn |
|
159 |
155 157 158
|
syl2anc |
|
160 |
159
|
nnnn0d |
|
161 |
150 160
|
expp1d |
|
162 |
153 161
|
eqtr4d |
|
163 |
149 162
|
breqtrd |
|
164 |
146 147 163
|
ltled |
|
165 |
|
fzofzp1 |
|
166 |
23 165
|
syl |
|
167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
168 |
166 167
|
mpdan |
|
169 |
168
|
simprd |
|
170 |
146 147 144 164 169
|
letrd |
|
171 |
146 144 143
|
lemul2d |
|
172 |
170 171
|
mpbid |
|
173 |
38
|
rprege0d |
|
174 |
|
remsqsqrt |
|
175 |
173 174
|
syl |
|
176 |
172 175
|
breqtrd |
|
177 |
144 39 111
|
lemuldivd |
|
178 |
176 177
|
mpbid |
|
179 |
142 144 140 145 178
|
letrd |
|
180 |
179
|
adantr |
|
181 |
|
reflcl |
|
182 |
|
peano2re |
|
183 |
140 181 182
|
3syl |
|
184 |
183
|
adantr |
|
185 |
|
fllep1 |
|
186 |
141 185
|
syl |
|
187 |
|
elfzle1 |
|
188 |
128 187
|
syl |
|
189 |
141 184 137 186 188
|
letrd |
|
190 |
139 141 137 180 189
|
letrd |
|
191 |
139 137 132 190 136
|
letrd |
|
192 |
|
logdivle |
|
193 |
137 190 132 191 192
|
syl22anc |
|
194 |
136 193
|
mpbid |
|
195 |
54
|
adantr |
|
196 |
|
lemul2 |
|
197 |
195 123 106 196
|
syl3anc |
|
198 |
194 197
|
mpbid |
|
199 |
27
|
rpcnd |
|
200 |
199
|
adantr |
|
201 |
122
|
recnd |
|
202 |
121
|
rpcnne0d |
|
203 |
|
div23 |
|
204 |
200 201 202 203
|
syl3anc |
|
205 |
|
divass |
|
206 |
200 201 202 205
|
syl3anc |
|
207 |
204 206
|
eqtr3d |
|
208 |
51
|
adantr |
|
209 |
208 120
|
nndivred |
|
210 |
125 85
|
syldan |
|
211 |
|
log1 |
|
212 |
120
|
nnge1d |
|
213 |
|
logleb |
|
214 |
108 121 213
|
sylancr |
|
215 |
212 214
|
mpbid |
|
216 |
211 215
|
eqbrtrrid |
|
217 |
7
|
rpcnd |
|
218 |
217
|
adantr |
|
219 |
30
|
rpred |
|
220 |
219
|
adantr |
|
221 |
220
|
recnd |
|
222 |
|
divsubdir |
|
223 |
218 221 202 222
|
syl3anc |
|
224 |
125 84
|
syldan |
|
225 |
220 120
|
nndivred |
|
226 |
125 75
|
syldan |
|
227 |
125 81
|
syldan |
|
228 |
227
|
recnd |
|
229 |
38
|
adantr |
|
230 |
229
|
rpcnne0d |
|
231 |
|
divdiv2 |
|
232 |
228 230 202 231
|
syl3anc |
|
233 |
121
|
rpcnd |
|
234 |
|
div23 |
|
235 |
228 233 230 234
|
syl3anc |
|
236 |
232 235
|
eqtrd |
|
237 |
236
|
fveq2d |
|
238 |
125 83
|
syldan |
|
239 |
238 233
|
absmuld |
|
240 |
121
|
rprege0d |
|
241 |
|
absid |
|
242 |
240 241
|
syl |
|
243 |
242
|
oveq2d |
|
244 |
237 239 243
|
3eqtrd |
|
245 |
|
fveq2 |
|
246 |
|
id |
|
247 |
245 246
|
oveq12d |
|
248 |
247
|
fveq2d |
|
249 |
248
|
breq1d |
|
250 |
22
|
simprd |
|
251 |
250
|
adantr |
|
252 |
39
|
adantr |
|
253 |
252 120
|
nndivred |
|
254 |
21
|
rpregt0d |
|
255 |
254
|
adantr |
|
256 |
|
lemuldiv2 |
|
257 |
137 252 255 256
|
syl3anc |
|
258 |
136 257
|
mpbird |
|
259 |
255
|
simpld |
|
260 |
259 252 121
|
lemuldivd |
|
261 |
258 260
|
mpbid |
|
262 |
111
|
rpregt0d |
|
263 |
262
|
adantr |
|
264 |
121
|
rpregt0d |
|
265 |
|
lediv23 |
|
266 |
252 263 264 265
|
syl3anc |
|
267 |
189 266
|
mpbid |
|
268 |
21
|
rpred |
|
269 |
268
|
adantr |
|
270 |
146
|
adantr |
|
271 |
|
elicc2 |
|
272 |
269 270 271
|
syl2anc |
|
273 |
253 261 267 272
|
mpbir3and |
|
274 |
249 251 273
|
rspcdva |
|
275 |
244 274
|
eqbrtrrd |
|
276 |
224 220 121
|
lemuldivd |
|
277 |
275 276
|
mpbid |
|
278 |
224 225 226 277
|
lesub2dd |
|
279 |
223 278
|
eqbrtrd |
|
280 |
209 210 122 216 279
|
lemul1ad |
|
281 |
207 280
|
eqbrtrrd |
|
282 |
99 124 126 198 281
|
letrd |
|
283 |
282
|
adantlr |
|
284 |
74
|
nnred |
|
285 |
38 151
|
rpdivcld |
|
286 |
285
|
rpred |
|
287 |
286
|
adantr |
|
288 |
11
|
simpld |
|
289 |
38 288
|
rpdivcld |
|
290 |
289
|
rpred |
|
291 |
290
|
adantr |
|
292 |
|
simpr |
|
293 |
292 20
|
eleqtrdi |
|
294 |
|
elfzle2 |
|
295 |
293 294
|
syl |
|
296 |
74
|
nnzd |
|
297 |
|
flge |
|
298 |
287 296 297
|
syl2anc |
|
299 |
295 298
|
mpbird |
|
300 |
288
|
rpred |
|
301 |
12
|
simpld |
|
302 |
301
|
rpred |
|
303 |
151
|
rpred |
|
304 |
12
|
simprd |
|
305 |
300 302 304
|
ltled |
|
306 |
|
elfzofz |
|
307 |
23 306
|
syl |
|
308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
309 |
307 308
|
mpdan |
|
310 |
309
|
simpld |
|
311 |
302 303 310
|
ltled |
|
312 |
300 302 303 305 311
|
letrd |
|
313 |
288 151 38
|
lediv2d |
|
314 |
312 313
|
mpbid |
|
315 |
314
|
adantr |
|
316 |
284 287 291 299 315
|
letrd |
|
317 |
74 316
|
jca |
|
318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
pntlemn |
|
319 |
317 318
|
syldan |
|
320 |
319
|
adantr |
|
321 |
103 104 283 320
|
ifbothda |
|
322 |
58 102 87 321
|
fsumle |
|
323 |
98 322
|
eqbrtrd |
|
324 |
45 56 88 89 323
|
letrd |
|