| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
|
pntlem1.y |
|
| 12 |
|
pntlem1.x |
|
| 13 |
|
pntlem1.c |
|
| 14 |
|
pntlem1.w |
|
| 15 |
|
pntlem1.z |
|
| 16 |
|
pntlem1.m |
|
| 17 |
|
pntlem1.n |
|
| 18 |
|
pntlem1.U |
|
| 19 |
|
pntlem1.K |
|
| 20 |
|
pntlem1.o |
|
| 21 |
|
pntlem1.v |
|
| 22 |
|
pntlem1.V |
|
| 23 |
|
pntlem1.j |
|
| 24 |
|
pntlem1.i |
|
| 25 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|
| 26 |
25
|
simp3d |
|
| 27 |
26
|
simp3d |
|
| 28 |
1 2 3 4 5 6
|
pntlemd |
|
| 29 |
28
|
simp1d |
|
| 30 |
25
|
simp1d |
|
| 31 |
29 30
|
rpmulcld |
|
| 32 |
|
8nn |
|
| 33 |
|
nnrp |
|
| 34 |
32 33
|
ax-mp |
|
| 35 |
|
rpdivcl |
|
| 36 |
31 34 35
|
sylancl |
|
| 37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
| 38 |
37
|
simp1d |
|
| 39 |
38
|
rpred |
|
| 40 |
37
|
simp2d |
|
| 41 |
40
|
simp1d |
|
| 42 |
39 41
|
rplogcld |
|
| 43 |
36 42
|
rpmulcld |
|
| 44 |
27 43
|
rpmulcld |
|
| 45 |
44
|
rpred |
|
| 46 |
|
fzfid |
|
| 47 |
24 46
|
eqeltrid |
|
| 48 |
|
hashcl |
|
| 49 |
47 48
|
syl |
|
| 50 |
49
|
nn0red |
|
| 51 |
27
|
rpred |
|
| 52 |
38 21
|
rpdivcld |
|
| 53 |
52
|
relogcld |
|
| 54 |
53 52
|
rerpdivcld |
|
| 55 |
51 54
|
remulcld |
|
| 56 |
50 55
|
remulcld |
|
| 57 |
|
fzfid |
|
| 58 |
20 57
|
eqeltrid |
|
| 59 |
7
|
rpred |
|
| 60 |
59
|
adantr |
|
| 61 |
25
|
simp2d |
|
| 62 |
|
elfzoelz |
|
| 63 |
23 62
|
syl |
|
| 64 |
63
|
peano2zd |
|
| 65 |
61 64
|
rpexpcld |
|
| 66 |
38 65
|
rpdivcld |
|
| 67 |
66
|
rprege0d |
|
| 68 |
|
flge0nn0 |
|
| 69 |
|
nn0p1nn |
|
| 70 |
67 68 69
|
3syl |
|
| 71 |
|
elfzuz |
|
| 72 |
71 20
|
eleq2s |
|
| 73 |
|
eluznn |
|
| 74 |
70 72 73
|
syl2an |
|
| 75 |
60 74
|
nndivred |
|
| 76 |
38
|
adantr |
|
| 77 |
74
|
nnrpd |
|
| 78 |
76 77
|
rpdivcld |
|
| 79 |
1
|
pntrf |
|
| 80 |
79
|
ffvelcdmi |
|
| 81 |
78 80
|
syl |
|
| 82 |
81 76
|
rerpdivcld |
|
| 83 |
82
|
recnd |
|
| 84 |
83
|
abscld |
|
| 85 |
75 84
|
resubcld |
|
| 86 |
77
|
relogcld |
|
| 87 |
85 86
|
remulcld |
|
| 88 |
58 87
|
fsumrecl |
|
| 89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
pntlemr |
|
| 90 |
55
|
recnd |
|
| 91 |
|
fsumconst |
|
| 92 |
47 90 91
|
syl2anc |
|
| 93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
pntlemq |
|
| 94 |
90
|
ralrimivw |
|
| 95 |
58
|
olcd |
|
| 96 |
|
sumss2 |
|
| 97 |
93 94 95 96
|
syl21anc |
|
| 98 |
92 97
|
eqtr3d |
|
| 99 |
55
|
adantr |
|
| 100 |
99
|
adantlr |
|
| 101 |
|
0red |
|
| 102 |
100 101
|
ifclda |
|
| 103 |
|
breq1 |
|
| 104 |
|
breq1 |
|
| 105 |
27
|
rpregt0d |
|
| 106 |
105
|
adantr |
|
| 107 |
106
|
simpld |
|
| 108 |
|
1rp |
|
| 109 |
|
rpaddcl |
|
| 110 |
108 31 109
|
sylancr |
|
| 111 |
110 21
|
rpmulcld |
|
| 112 |
38 111
|
rpdivcld |
|
| 113 |
112
|
rprege0d |
|
| 114 |
|
flge0nn0 |
|
| 115 |
|
nn0p1nn |
|
| 116 |
113 114 115
|
3syl |
|
| 117 |
|
elfzuz |
|
| 118 |
117 24
|
eleq2s |
|
| 119 |
|
eluznn |
|
| 120 |
116 118 119
|
syl2an |
|
| 121 |
120
|
nnrpd |
|
| 122 |
121
|
relogcld |
|
| 123 |
122 120
|
nndivred |
|
| 124 |
107 123
|
remulcld |
|
| 125 |
93
|
sselda |
|
| 126 |
125 87
|
syldan |
|
| 127 |
|
simpr |
|
| 128 |
127 24
|
eleqtrdi |
|
| 129 |
|
elfzle2 |
|
| 130 |
128 129
|
syl |
|
| 131 |
52
|
rpred |
|
| 132 |
131
|
adantr |
|
| 133 |
128
|
elfzelzd |
|
| 134 |
|
flge |
|
| 135 |
132 133 134
|
syl2anc |
|
| 136 |
130 135
|
mpbird |
|
| 137 |
120
|
nnred |
|
| 138 |
|
ere |
|
| 139 |
138
|
a1i |
|
| 140 |
112
|
rpred |
|
| 141 |
140
|
adantr |
|
| 142 |
138
|
a1i |
|
| 143 |
38
|
rpsqrtcld |
|
| 144 |
143
|
rpred |
|
| 145 |
40
|
simp2d |
|
| 146 |
111
|
rpred |
|
| 147 |
65
|
rpred |
|
| 148 |
22
|
simpld |
|
| 149 |
148
|
simprd |
|
| 150 |
61
|
rpcnd |
|
| 151 |
61 63
|
rpexpcld |
|
| 152 |
151
|
rpcnd |
|
| 153 |
150 152
|
mulcomd |
|
| 154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
|
| 155 |
154
|
simp1d |
|
| 156 |
|
elfzouz |
|
| 157 |
23 156
|
syl |
|
| 158 |
|
eluznn |
|
| 159 |
155 157 158
|
syl2anc |
|
| 160 |
159
|
nnnn0d |
|
| 161 |
150 160
|
expp1d |
|
| 162 |
153 161
|
eqtr4d |
|
| 163 |
149 162
|
breqtrd |
|
| 164 |
146 147 163
|
ltled |
|
| 165 |
|
fzofzp1 |
|
| 166 |
23 165
|
syl |
|
| 167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
| 168 |
166 167
|
mpdan |
|
| 169 |
168
|
simprd |
|
| 170 |
146 147 144 164 169
|
letrd |
|
| 171 |
146 144 143
|
lemul2d |
|
| 172 |
170 171
|
mpbid |
|
| 173 |
38
|
rprege0d |
|
| 174 |
|
remsqsqrt |
|
| 175 |
173 174
|
syl |
|
| 176 |
172 175
|
breqtrd |
|
| 177 |
144 39 111
|
lemuldivd |
|
| 178 |
176 177
|
mpbid |
|
| 179 |
142 144 140 145 178
|
letrd |
|
| 180 |
179
|
adantr |
|
| 181 |
|
reflcl |
|
| 182 |
|
peano2re |
|
| 183 |
140 181 182
|
3syl |
|
| 184 |
183
|
adantr |
|
| 185 |
|
fllep1 |
|
| 186 |
141 185
|
syl |
|
| 187 |
|
elfzle1 |
|
| 188 |
128 187
|
syl |
|
| 189 |
141 184 137 186 188
|
letrd |
|
| 190 |
139 141 137 180 189
|
letrd |
|
| 191 |
139 137 132 190 136
|
letrd |
|
| 192 |
|
logdivle |
|
| 193 |
137 190 132 191 192
|
syl22anc |
|
| 194 |
136 193
|
mpbid |
|
| 195 |
54
|
adantr |
|
| 196 |
|
lemul2 |
|
| 197 |
195 123 106 196
|
syl3anc |
|
| 198 |
194 197
|
mpbid |
|
| 199 |
27
|
rpcnd |
|
| 200 |
199
|
adantr |
|
| 201 |
122
|
recnd |
|
| 202 |
121
|
rpcnne0d |
|
| 203 |
|
div23 |
|
| 204 |
200 201 202 203
|
syl3anc |
|
| 205 |
|
divass |
|
| 206 |
200 201 202 205
|
syl3anc |
|
| 207 |
204 206
|
eqtr3d |
|
| 208 |
51
|
adantr |
|
| 209 |
208 120
|
nndivred |
|
| 210 |
125 85
|
syldan |
|
| 211 |
|
log1 |
|
| 212 |
120
|
nnge1d |
|
| 213 |
|
logleb |
|
| 214 |
108 121 213
|
sylancr |
|
| 215 |
212 214
|
mpbid |
|
| 216 |
211 215
|
eqbrtrrid |
|
| 217 |
7
|
rpcnd |
|
| 218 |
217
|
adantr |
|
| 219 |
30
|
rpred |
|
| 220 |
219
|
adantr |
|
| 221 |
220
|
recnd |
|
| 222 |
|
divsubdir |
|
| 223 |
218 221 202 222
|
syl3anc |
|
| 224 |
125 84
|
syldan |
|
| 225 |
220 120
|
nndivred |
|
| 226 |
125 75
|
syldan |
|
| 227 |
125 81
|
syldan |
|
| 228 |
227
|
recnd |
|
| 229 |
38
|
adantr |
|
| 230 |
229
|
rpcnne0d |
|
| 231 |
|
divdiv2 |
|
| 232 |
228 230 202 231
|
syl3anc |
|
| 233 |
121
|
rpcnd |
|
| 234 |
|
div23 |
|
| 235 |
228 233 230 234
|
syl3anc |
|
| 236 |
232 235
|
eqtrd |
|
| 237 |
236
|
fveq2d |
|
| 238 |
125 83
|
syldan |
|
| 239 |
238 233
|
absmuld |
|
| 240 |
121
|
rprege0d |
|
| 241 |
|
absid |
|
| 242 |
240 241
|
syl |
|
| 243 |
242
|
oveq2d |
|
| 244 |
237 239 243
|
3eqtrd |
|
| 245 |
|
fveq2 |
|
| 246 |
|
id |
|
| 247 |
245 246
|
oveq12d |
|
| 248 |
247
|
fveq2d |
|
| 249 |
248
|
breq1d |
|
| 250 |
22
|
simprd |
|
| 251 |
250
|
adantr |
|
| 252 |
39
|
adantr |
|
| 253 |
252 120
|
nndivred |
|
| 254 |
21
|
rpregt0d |
|
| 255 |
254
|
adantr |
|
| 256 |
|
lemuldiv2 |
|
| 257 |
137 252 255 256
|
syl3anc |
|
| 258 |
136 257
|
mpbird |
|
| 259 |
255
|
simpld |
|
| 260 |
259 252 121
|
lemuldivd |
|
| 261 |
258 260
|
mpbid |
|
| 262 |
111
|
rpregt0d |
|
| 263 |
262
|
adantr |
|
| 264 |
121
|
rpregt0d |
|
| 265 |
|
lediv23 |
|
| 266 |
252 263 264 265
|
syl3anc |
|
| 267 |
189 266
|
mpbid |
|
| 268 |
21
|
rpred |
|
| 269 |
268
|
adantr |
|
| 270 |
146
|
adantr |
|
| 271 |
|
elicc2 |
|
| 272 |
269 270 271
|
syl2anc |
|
| 273 |
253 261 267 272
|
mpbir3and |
|
| 274 |
249 251 273
|
rspcdva |
|
| 275 |
244 274
|
eqbrtrrd |
|
| 276 |
224 220 121
|
lemuldivd |
|
| 277 |
275 276
|
mpbid |
|
| 278 |
224 225 226 277
|
lesub2dd |
|
| 279 |
223 278
|
eqbrtrd |
|
| 280 |
209 210 122 216 279
|
lemul1ad |
|
| 281 |
207 280
|
eqbrtrrd |
|
| 282 |
99 124 126 198 281
|
letrd |
|
| 283 |
282
|
adantlr |
|
| 284 |
74
|
nnred |
|
| 285 |
38 151
|
rpdivcld |
|
| 286 |
285
|
rpred |
|
| 287 |
286
|
adantr |
|
| 288 |
11
|
simpld |
|
| 289 |
38 288
|
rpdivcld |
|
| 290 |
289
|
rpred |
|
| 291 |
290
|
adantr |
|
| 292 |
|
simpr |
|
| 293 |
292 20
|
eleqtrdi |
|
| 294 |
|
elfzle2 |
|
| 295 |
293 294
|
syl |
|
| 296 |
74
|
nnzd |
|
| 297 |
|
flge |
|
| 298 |
287 296 297
|
syl2anc |
|
| 299 |
295 298
|
mpbird |
|
| 300 |
288
|
rpred |
|
| 301 |
12
|
simpld |
|
| 302 |
301
|
rpred |
|
| 303 |
151
|
rpred |
|
| 304 |
12
|
simprd |
|
| 305 |
300 302 304
|
ltled |
|
| 306 |
|
elfzofz |
|
| 307 |
23 306
|
syl |
|
| 308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|
| 309 |
307 308
|
mpdan |
|
| 310 |
309
|
simpld |
|
| 311 |
302 303 310
|
ltled |
|
| 312 |
300 302 303 305 311
|
letrd |
|
| 313 |
288 151 38
|
lediv2d |
|
| 314 |
312 313
|
mpbid |
|
| 315 |
314
|
adantr |
|
| 316 |
284 287 291 299 315
|
letrd |
|
| 317 |
74 316
|
jca |
|
| 318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
pntlemn |
|
| 319 |
317 318
|
syldan |
|
| 320 |
319
|
adantr |
|
| 321 |
103 104 283 320
|
ifbothda |
|
| 322 |
58 102 87 321
|
fsumle |
|
| 323 |
98 322
|
eqbrtrd |
|
| 324 |
45 56 88 89 323
|
letrd |
|