Metamath Proof Explorer


Theorem pntlemj

Description: Lemma for pnt . The induction step. Using pntibnd , we find an interval in K ^ J ... K ^ ( J + 1 ) which is sufficiently large and has a much smaller value, R ( z ) / z <_ E (instead of our original bound R ( z ) / z <_ U ). (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
pntlem1.U φ z Y +∞ R z z U
pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
pntlem1.o O = Z K J + 1 + 1 Z K J
pntlem1.v φ V +
pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
pntlem1.j φ J M ..^ N
pntlem1.i I = Z 1 + L E V + 1 Z V
Assertion pntlemj φ U E L E 8 log Z n O U n R Z n Z log n

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 pntlem1.U φ z Y +∞ R z z U
19 pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
20 pntlem1.o O = Z K J + 1 + 1 Z K J
21 pntlem1.v φ V +
22 pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
23 pntlem1.j φ J M ..^ N
24 pntlem1.i I = Z 1 + L E V + 1 Z V
25 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
26 25 simp3d φ E 0 1 1 < K U E +
27 26 simp3d φ U E +
28 1 2 3 4 5 6 pntlemd φ L + D + F +
29 28 simp1d φ L +
30 25 simp1d φ E +
31 29 30 rpmulcld φ L E +
32 8nn 8
33 nnrp 8 8 +
34 32 33 ax-mp 8 +
35 rpdivcl L E + 8 + L E 8 +
36 31 34 35 sylancl φ L E 8 +
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
38 37 simp1d φ Z +
39 38 rpred φ Z
40 37 simp2d φ 1 < Z e Z Z Z Y
41 40 simp1d φ 1 < Z
42 39 41 rplogcld φ log Z +
43 36 42 rpmulcld φ L E 8 log Z +
44 27 43 rpmulcld φ U E L E 8 log Z +
45 44 rpred φ U E L E 8 log Z
46 fzfid φ Z 1 + L E V + 1 Z V Fin
47 24 46 eqeltrid φ I Fin
48 hashcl I Fin I 0
49 47 48 syl φ I 0
50 49 nn0red φ I
51 27 rpred φ U E
52 38 21 rpdivcld φ Z V +
53 52 relogcld φ log Z V
54 53 52 rerpdivcld φ log Z V Z V
55 51 54 remulcld φ U E log Z V Z V
56 50 55 remulcld φ I U E log Z V Z V
57 fzfid φ Z K J + 1 + 1 Z K J Fin
58 20 57 eqeltrid φ O Fin
59 7 rpred φ U
60 59 adantr φ n O U
61 25 simp2d φ K +
62 elfzoelz J M ..^ N J
63 23 62 syl φ J
64 63 peano2zd φ J + 1
65 61 64 rpexpcld φ K J + 1 +
66 38 65 rpdivcld φ Z K J + 1 +
67 66 rprege0d φ Z K J + 1 0 Z K J + 1
68 flge0nn0 Z K J + 1 0 Z K J + 1 Z K J + 1 0
69 nn0p1nn Z K J + 1 0 Z K J + 1 + 1
70 67 68 69 3syl φ Z K J + 1 + 1
71 elfzuz n Z K J + 1 + 1 Z K J n Z K J + 1 + 1
72 71 20 eleq2s n O n Z K J + 1 + 1
73 eluznn Z K J + 1 + 1 n Z K J + 1 + 1 n
74 70 72 73 syl2an φ n O n
75 60 74 nndivred φ n O U n
76 38 adantr φ n O Z +
77 74 nnrpd φ n O n +
78 76 77 rpdivcld φ n O Z n +
79 1 pntrf R : +
80 79 ffvelrni Z n + R Z n
81 78 80 syl φ n O R Z n
82 81 76 rerpdivcld φ n O R Z n Z
83 82 recnd φ n O R Z n Z
84 83 abscld φ n O R Z n Z
85 75 84 resubcld φ n O U n R Z n Z
86 77 relogcld φ n O log n
87 85 86 remulcld φ n O U n R Z n Z log n
88 58 87 fsumrecl φ n O U n R Z n Z log n
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemr φ U E L E 8 log Z I U E log Z V Z V
90 55 recnd φ U E log Z V Z V
91 fsumconst I Fin U E log Z V Z V n I U E log Z V Z V = I U E log Z V Z V
92 47 90 91 syl2anc φ n I U E log Z V Z V = I U E log Z V Z V
93 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 pntlemq φ I O
94 90 ralrimivw φ n I U E log Z V Z V
95 58 olcd φ O 1 O Fin
96 sumss2 I O n I U E log Z V Z V O 1 O Fin n I U E log Z V Z V = n O if n I U E log Z V Z V 0
97 93 94 95 96 syl21anc φ n I U E log Z V Z V = n O if n I U E log Z V Z V 0
98 92 97 eqtr3d φ I U E log Z V Z V = n O if n I U E log Z V Z V 0
99 55 adantr φ n I U E log Z V Z V
100 99 adantlr φ n O n I U E log Z V Z V
101 0red φ n O ¬ n I 0
102 100 101 ifclda φ n O if n I U E log Z V Z V 0
103 breq1 U E log Z V Z V = if n I U E log Z V Z V 0 U E log Z V Z V U n R Z n Z log n if n I U E log Z V Z V 0 U n R Z n Z log n
104 breq1 0 = if n I U E log Z V Z V 0 0 U n R Z n Z log n if n I U E log Z V Z V 0 U n R Z n Z log n
105 27 rpregt0d φ U E 0 < U E
106 105 adantr φ n I U E 0 < U E
107 106 simpld φ n I U E
108 1rp 1 +
109 rpaddcl 1 + L E + 1 + L E +
110 108 31 109 sylancr φ 1 + L E +
111 110 21 rpmulcld φ 1 + L E V +
112 38 111 rpdivcld φ Z 1 + L E V +
113 112 rprege0d φ Z 1 + L E V 0 Z 1 + L E V
114 flge0nn0 Z 1 + L E V 0 Z 1 + L E V Z 1 + L E V 0
115 nn0p1nn Z 1 + L E V 0 Z 1 + L E V + 1
116 113 114 115 3syl φ Z 1 + L E V + 1
117 elfzuz n Z 1 + L E V + 1 Z V n Z 1 + L E V + 1
118 117 24 eleq2s n I n Z 1 + L E V + 1
119 eluznn Z 1 + L E V + 1 n Z 1 + L E V + 1 n
120 116 118 119 syl2an φ n I n
121 120 nnrpd φ n I n +
122 121 relogcld φ n I log n
123 122 120 nndivred φ n I log n n
124 107 123 remulcld φ n I U E log n n
125 93 sselda φ n I n O
126 125 87 syldan φ n I U n R Z n Z log n
127 simpr φ n I n I
128 127 24 eleqtrdi φ n I n Z 1 + L E V + 1 Z V
129 elfzle2 n Z 1 + L E V + 1 Z V n Z V
130 128 129 syl φ n I n Z V
131 52 rpred φ Z V
132 131 adantr φ n I Z V
133 128 elfzelzd φ n I n
134 flge Z V n n Z V n Z V
135 132 133 134 syl2anc φ n I n Z V n Z V
136 130 135 mpbird φ n I n Z V
137 120 nnred φ n I n
138 ere e
139 138 a1i φ n I e
140 112 rpred φ Z 1 + L E V
141 140 adantr φ n I Z 1 + L E V
142 138 a1i φ e
143 38 rpsqrtcld φ Z +
144 143 rpred φ Z
145 40 simp2d φ e Z
146 111 rpred φ 1 + L E V
147 65 rpred φ K J + 1
148 22 simpld φ K J < V 1 + L E V < K K J
149 148 simprd φ 1 + L E V < K K J
150 61 rpcnd φ K
151 61 63 rpexpcld φ K J +
152 151 rpcnd φ K J
153 150 152 mulcomd φ K K J = K J K
154 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φ M N M log Z log K 4 N M
155 154 simp1d φ M
156 elfzouz J M ..^ N J M
157 23 156 syl φ J M
158 eluznn M J M J
159 155 157 158 syl2anc φ J
160 159 nnnn0d φ J 0
161 150 160 expp1d φ K J + 1 = K J K
162 153 161 eqtr4d φ K K J = K J + 1
163 149 162 breqtrd φ 1 + L E V < K J + 1
164 146 147 163 ltled φ 1 + L E V K J + 1
165 fzofzp1 J M ..^ N J + 1 M N
166 23 165 syl φ J + 1 M N
167 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φ J + 1 M N X < K J + 1 K J + 1 Z
168 166 167 mpdan φ X < K J + 1 K J + 1 Z
169 168 simprd φ K J + 1 Z
170 146 147 144 164 169 letrd φ 1 + L E V Z
171 146 144 143 lemul2d φ 1 + L E V Z Z 1 + L E V Z Z
172 170 171 mpbid φ Z 1 + L E V Z Z
173 38 rprege0d φ Z 0 Z
174 remsqsqrt Z 0 Z Z Z = Z
175 173 174 syl φ Z Z = Z
176 172 175 breqtrd φ Z 1 + L E V Z
177 144 39 111 lemuldivd φ Z 1 + L E V Z Z Z 1 + L E V
178 176 177 mpbid φ Z Z 1 + L E V
179 142 144 140 145 178 letrd φ e Z 1 + L E V
180 179 adantr φ n I e Z 1 + L E V
181 reflcl Z 1 + L E V Z 1 + L E V
182 peano2re Z 1 + L E V Z 1 + L E V + 1
183 140 181 182 3syl φ Z 1 + L E V + 1
184 183 adantr φ n I Z 1 + L E V + 1
185 fllep1 Z 1 + L E V Z 1 + L E V Z 1 + L E V + 1
186 141 185 syl φ n I Z 1 + L E V Z 1 + L E V + 1
187 elfzle1 n Z 1 + L E V + 1 Z V Z 1 + L E V + 1 n
188 128 187 syl φ n I Z 1 + L E V + 1 n
189 141 184 137 186 188 letrd φ n I Z 1 + L E V n
190 139 141 137 180 189 letrd φ n I e n
191 139 137 132 190 136 letrd φ n I e Z V
192 logdivle n e n Z V e Z V n Z V log Z V Z V log n n
193 137 190 132 191 192 syl22anc φ n I n Z V log Z V Z V log n n
194 136 193 mpbid φ n I log Z V Z V log n n
195 54 adantr φ n I log Z V Z V
196 lemul2 log Z V Z V log n n U E 0 < U E log Z V Z V log n n U E log Z V Z V U E log n n
197 195 123 106 196 syl3anc φ n I log Z V Z V log n n U E log Z V Z V U E log n n
198 194 197 mpbid φ n I U E log Z V Z V U E log n n
199 27 rpcnd φ U E
200 199 adantr φ n I U E
201 122 recnd φ n I log n
202 121 rpcnne0d φ n I n n 0
203 div23 U E log n n n 0 U E log n n = U E n log n
204 200 201 202 203 syl3anc φ n I U E log n n = U E n log n
205 divass U E log n n n 0 U E log n n = U E log n n
206 200 201 202 205 syl3anc φ n I U E log n n = U E log n n
207 204 206 eqtr3d φ n I U E n log n = U E log n n
208 51 adantr φ n I U E
209 208 120 nndivred φ n I U E n
210 125 85 syldan φ n I U n R Z n Z
211 log1 log 1 = 0
212 120 nnge1d φ n I 1 n
213 logleb 1 + n + 1 n log 1 log n
214 108 121 213 sylancr φ n I 1 n log 1 log n
215 212 214 mpbid φ n I log 1 log n
216 211 215 eqbrtrrid φ n I 0 log n
217 7 rpcnd φ U
218 217 adantr φ n I U
219 30 rpred φ E
220 219 adantr φ n I E
221 220 recnd φ n I E
222 divsubdir U E n n 0 U E n = U n E n
223 218 221 202 222 syl3anc φ n I U E n = U n E n
224 125 84 syldan φ n I R Z n Z
225 220 120 nndivred φ n I E n
226 125 75 syldan φ n I U n
227 125 81 syldan φ n I R Z n
228 227 recnd φ n I R Z n
229 38 adantr φ n I Z +
230 229 rpcnne0d φ n I Z Z 0
231 divdiv2 R Z n Z Z 0 n n 0 R Z n Z n = R Z n n Z
232 228 230 202 231 syl3anc φ n I R Z n Z n = R Z n n Z
233 121 rpcnd φ n I n
234 div23 R Z n n Z Z 0 R Z n n Z = R Z n Z n
235 228 233 230 234 syl3anc φ n I R Z n n Z = R Z n Z n
236 232 235 eqtrd φ n I R Z n Z n = R Z n Z n
237 236 fveq2d φ n I R Z n Z n = R Z n Z n
238 125 83 syldan φ n I R Z n Z
239 238 233 absmuld φ n I R Z n Z n = R Z n Z n
240 121 rprege0d φ n I n 0 n
241 absid n 0 n n = n
242 240 241 syl φ n I n = n
243 242 oveq2d φ n I R Z n Z n = R Z n Z n
244 237 239 243 3eqtrd φ n I R Z n Z n = R Z n Z n
245 fveq2 u = Z n R u = R Z n
246 id u = Z n u = Z n
247 245 246 oveq12d u = Z n R u u = R Z n Z n
248 247 fveq2d u = Z n R u u = R Z n Z n
249 248 breq1d u = Z n R u u E R Z n Z n E
250 22 simprd φ u V 1 + L E V R u u E
251 250 adantr φ n I u V 1 + L E V R u u E
252 39 adantr φ n I Z
253 252 120 nndivred φ n I Z n
254 21 rpregt0d φ V 0 < V
255 254 adantr φ n I V 0 < V
256 lemuldiv2 n Z V 0 < V V n Z n Z V
257 137 252 255 256 syl3anc φ n I V n Z n Z V
258 136 257 mpbird φ n I V n Z
259 255 simpld φ n I V
260 259 252 121 lemuldivd φ n I V n Z V Z n
261 258 260 mpbid φ n I V Z n
262 111 rpregt0d φ 1 + L E V 0 < 1 + L E V
263 262 adantr φ n I 1 + L E V 0 < 1 + L E V
264 121 rpregt0d φ n I n 0 < n
265 lediv23 Z 1 + L E V 0 < 1 + L E V n 0 < n Z 1 + L E V n Z n 1 + L E V
266 252 263 264 265 syl3anc φ n I Z 1 + L E V n Z n 1 + L E V
267 189 266 mpbid φ n I Z n 1 + L E V
268 21 rpred φ V
269 268 adantr φ n I V
270 146 adantr φ n I 1 + L E V
271 elicc2 V 1 + L E V Z n V 1 + L E V Z n V Z n Z n 1 + L E V
272 269 270 271 syl2anc φ n I Z n V 1 + L E V Z n V Z n Z n 1 + L E V
273 253 261 267 272 mpbir3and φ n I Z n V 1 + L E V
274 249 251 273 rspcdva φ n I R Z n Z n E
275 244 274 eqbrtrrd φ n I R Z n Z n E
276 224 220 121 lemuldivd φ n I R Z n Z n E R Z n Z E n
277 275 276 mpbid φ n I R Z n Z E n
278 224 225 226 277 lesub2dd φ n I U n E n U n R Z n Z
279 223 278 eqbrtrd φ n I U E n U n R Z n Z
280 209 210 122 216 279 lemul1ad φ n I U E n log n U n R Z n Z log n
281 207 280 eqbrtrrd φ n I U E log n n U n R Z n Z log n
282 99 124 126 198 281 letrd φ n I U E log Z V Z V U n R Z n Z log n
283 282 adantlr φ n O n I U E log Z V Z V U n R Z n Z log n
284 74 nnred φ n O n
285 38 151 rpdivcld φ Z K J +
286 285 rpred φ Z K J
287 286 adantr φ n O Z K J
288 11 simpld φ Y +
289 38 288 rpdivcld φ Z Y +
290 289 rpred φ Z Y
291 290 adantr φ n O Z Y
292 simpr φ n O n O
293 292 20 eleqtrdi φ n O n Z K J + 1 + 1 Z K J
294 elfzle2 n Z K J + 1 + 1 Z K J n Z K J
295 293 294 syl φ n O n Z K J
296 74 nnzd φ n O n
297 flge Z K J n n Z K J n Z K J
298 287 296 297 syl2anc φ n O n Z K J n Z K J
299 295 298 mpbird φ n O n Z K J
300 288 rpred φ Y
301 12 simpld φ X +
302 301 rpred φ X
303 151 rpred φ K J
304 12 simprd φ Y < X
305 300 302 304 ltled φ Y X
306 elfzofz J M ..^ N J M N
307 23 306 syl φ J M N
308 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φ J M N X < K J K J Z
309 307 308 mpdan φ X < K J K J Z
310 309 simpld φ X < K J
311 302 303 310 ltled φ X K J
312 300 302 303 305 311 letrd φ Y K J
313 288 151 38 lediv2d φ Y K J Z K J Z Y
314 312 313 mpbid φ Z K J Z Y
315 314 adantr φ n O Z K J Z Y
316 284 287 291 299 315 letrd φ n O n Z Y
317 74 316 jca φ n O n n Z Y
318 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 pntlemn φ n n Z Y 0 U n R Z n Z log n
319 317 318 syldan φ n O 0 U n R Z n Z log n
320 319 adantr φ n O ¬ n I 0 U n R Z n Z log n
321 103 104 283 320 ifbothda φ n O if n I U E log Z V Z V 0 U n R Z n Z log n
322 58 102 87 321 fsumle φ n O if n I U E log Z V Z V 0 n O U n R Z n Z log n
323 98 322 eqbrtrd φ I U E log Z V Z V n O U n R Z n Z log n
324 45 56 88 89 323 letrd φ U E L E 8 log Z n O U n R Z n Z log n