| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem3.r |  | 
						
							| 2 |  | pntlem3.a |  | 
						
							| 3 |  | pntlem3.A |  | 
						
							| 4 |  | pntlemp.b |  | 
						
							| 5 |  | pntlemp.l |  | 
						
							| 6 |  | pntlemp.d |  | 
						
							| 7 |  | pntlemp.f |  | 
						
							| 8 |  | pntlemp.K |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 2 4 5 6 7 | pntlemd |  | 
						
							| 11 | 10 | simp3d |  | 
						
							| 12 |  | 0m0e0 |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 |  | 3nn |  | 
						
							| 16 |  | 0exp |  | 
						
							| 17 | 15 16 | ax-mp |  | 
						
							| 18 | 14 17 | eqtrdi |  | 
						
							| 19 | 18 | oveq2d |  | 
						
							| 20 | 11 | rpcnd |  | 
						
							| 21 | 20 | mul01d |  | 
						
							| 22 | 21 | ad2antrr |  | 
						
							| 23 | 19 22 | eqtrd |  | 
						
							| 24 | 13 23 | oveq12d |  | 
						
							| 25 | 12 24 13 | 3eqtr4a |  | 
						
							| 26 |  | simplr |  | 
						
							| 27 | 25 26 | eqeltrd |  | 
						
							| 28 |  | oveq1 |  | 
						
							| 29 | 28 | raleqdv |  | 
						
							| 30 | 29 | cbvrexvw |  | 
						
							| 31 |  | simplrr |  | 
						
							| 32 |  | 0re |  | 
						
							| 33 | 2 | ad2antrr |  | 
						
							| 34 | 33 | rpred |  | 
						
							| 35 |  | elicc2 |  | 
						
							| 36 | 32 34 35 | sylancr |  | 
						
							| 37 | 31 36 | mpbid |  | 
						
							| 38 | 37 | simp1d |  | 
						
							| 39 | 11 | ad2antrr |  | 
						
							| 40 | 37 | simp2d |  | 
						
							| 41 |  | simplrl |  | 
						
							| 42 | 38 40 41 | ne0gt0d |  | 
						
							| 43 | 38 42 | elrpd |  | 
						
							| 44 |  | 3z |  | 
						
							| 45 |  | rpexpcl |  | 
						
							| 46 | 43 44 45 | sylancl |  | 
						
							| 47 | 39 46 | rpmulcld |  | 
						
							| 48 | 47 | rpred |  | 
						
							| 49 | 38 48 | resubcld |  | 
						
							| 50 | 3 | ad2antrr |  | 
						
							| 51 | 4 | ad2antrr |  | 
						
							| 52 | 5 | ad2antrr |  | 
						
							| 53 | 8 | ad2antrr |  | 
						
							| 54 | 37 | simp3d |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 |  | simprl |  | 
						
							| 58 |  | 1rp |  | 
						
							| 59 |  | rpaddcl |  | 
						
							| 60 | 57 58 59 | sylancl |  | 
						
							| 61 | 57 | rpge0d |  | 
						
							| 62 |  | 1re |  | 
						
							| 63 | 57 | rpred |  | 
						
							| 64 |  | addge02 |  | 
						
							| 65 | 62 63 64 | sylancr |  | 
						
							| 66 | 61 65 | mpbid |  | 
						
							| 67 | 60 66 | jca |  | 
						
							| 68 | 57 | rpxrd |  | 
						
							| 69 | 63 | lep1d |  | 
						
							| 70 |  | df-ico |  | 
						
							| 71 |  | xrletr |  | 
						
							| 72 | 70 70 71 | ixxss1 |  | 
						
							| 73 | 68 69 72 | syl2anc |  | 
						
							| 74 |  | simprr |  | 
						
							| 75 |  | ssralv |  | 
						
							| 76 | 73 74 75 | sylc |  | 
						
							| 77 | 1 33 50 51 52 6 7 53 43 54 55 56 67 76 | pntlemp |  | 
						
							| 78 |  | rpre |  | 
						
							| 79 | 78 | adantl |  | 
						
							| 80 | 79 | leidd |  | 
						
							| 81 |  | elicopnf |  | 
						
							| 82 | 79 81 | syl |  | 
						
							| 83 | 79 80 82 | mpbir2and |  | 
						
							| 84 |  | fveq2 |  | 
						
							| 85 |  | id |  | 
						
							| 86 | 84 85 | oveq12d |  | 
						
							| 87 | 86 | fveq2d |  | 
						
							| 88 | 87 | breq1d |  | 
						
							| 89 | 88 | rspcv |  | 
						
							| 90 | 83 89 | syl |  | 
						
							| 91 | 1 | pntrf |  | 
						
							| 92 | 91 | ffvelcdmi |  | 
						
							| 93 |  | rerpdivcl |  | 
						
							| 94 | 92 93 | mpancom |  | 
						
							| 95 | 94 | adantl |  | 
						
							| 96 | 95 | recnd |  | 
						
							| 97 | 96 | absge0d |  | 
						
							| 98 | 96 | abscld |  | 
						
							| 99 | 49 | adantr |  | 
						
							| 100 |  | letr |  | 
						
							| 101 | 32 98 99 100 | mp3an2i |  | 
						
							| 102 | 97 101 | mpand |  | 
						
							| 103 | 90 102 | syld |  | 
						
							| 104 | 103 | rexlimdva |  | 
						
							| 105 | 77 104 | mpd |  | 
						
							| 106 | 47 | rpge0d |  | 
						
							| 107 | 38 48 | subge02d |  | 
						
							| 108 | 106 107 | mpbid |  | 
						
							| 109 | 49 38 34 108 54 | letrd |  | 
						
							| 110 |  | elicc2 |  | 
						
							| 111 | 32 34 110 | sylancr |  | 
						
							| 112 | 49 105 109 111 | mpbir3and |  | 
						
							| 113 | 112 77 | jca |  | 
						
							| 114 | 113 | rexlimdvaa |  | 
						
							| 115 | 30 114 | biimtrid |  | 
						
							| 116 | 115 | anassrs |  | 
						
							| 117 | 116 | expimpd |  | 
						
							| 118 |  | breq2 |  | 
						
							| 119 | 118 | rexralbidv |  | 
						
							| 120 | 119 | elrab |  | 
						
							| 121 |  | breq2 |  | 
						
							| 122 | 121 | rexralbidv |  | 
						
							| 123 |  | fveq2 |  | 
						
							| 124 |  | id |  | 
						
							| 125 | 123 124 | oveq12d |  | 
						
							| 126 | 125 | fveq2d |  | 
						
							| 127 | 126 | breq1d |  | 
						
							| 128 | 127 | cbvralvw |  | 
						
							| 129 |  | oveq1 |  | 
						
							| 130 | 129 | raleqdv |  | 
						
							| 131 | 128 130 | bitrid |  | 
						
							| 132 | 131 | cbvrexvw |  | 
						
							| 133 | 122 132 | bitr4di |  | 
						
							| 134 | 133 | elrab |  | 
						
							| 135 | 117 120 134 | 3imtr4g |  | 
						
							| 136 | 135 | imp |  | 
						
							| 137 | 136 | an32s |  | 
						
							| 138 | 27 137 | pm2.61dane |  | 
						
							| 139 | 1 2 3 9 11 138 | pntlem3 |  |