Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem3.r |
|
2 |
|
pntlem3.a |
|
3 |
|
pntlem3.A |
|
4 |
|
pntlemp.b |
|
5 |
|
pntlemp.l |
|
6 |
|
pntlemp.d |
|
7 |
|
pntlemp.f |
|
8 |
|
pntlemp.K |
|
9 |
|
eqid |
|
10 |
1 2 4 5 6 7
|
pntlemd |
|
11 |
10
|
simp3d |
|
12 |
|
0m0e0 |
|
13 |
|
simpr |
|
14 |
13
|
oveq1d |
|
15 |
|
3nn |
|
16 |
|
0exp |
|
17 |
15 16
|
ax-mp |
|
18 |
14 17
|
eqtrdi |
|
19 |
18
|
oveq2d |
|
20 |
11
|
rpcnd |
|
21 |
20
|
mul01d |
|
22 |
21
|
ad2antrr |
|
23 |
19 22
|
eqtrd |
|
24 |
13 23
|
oveq12d |
|
25 |
12 24 13
|
3eqtr4a |
|
26 |
|
simplr |
|
27 |
25 26
|
eqeltrd |
|
28 |
|
oveq1 |
|
29 |
28
|
raleqdv |
|
30 |
29
|
cbvrexvw |
|
31 |
|
simplrr |
|
32 |
|
0re |
|
33 |
2
|
ad2antrr |
|
34 |
33
|
rpred |
|
35 |
|
elicc2 |
|
36 |
32 34 35
|
sylancr |
|
37 |
31 36
|
mpbid |
|
38 |
37
|
simp1d |
|
39 |
11
|
ad2antrr |
|
40 |
37
|
simp2d |
|
41 |
|
simplrl |
|
42 |
38 40 41
|
ne0gt0d |
|
43 |
38 42
|
elrpd |
|
44 |
|
3z |
|
45 |
|
rpexpcl |
|
46 |
43 44 45
|
sylancl |
|
47 |
39 46
|
rpmulcld |
|
48 |
47
|
rpred |
|
49 |
38 48
|
resubcld |
|
50 |
3
|
ad2antrr |
|
51 |
4
|
ad2antrr |
|
52 |
5
|
ad2antrr |
|
53 |
8
|
ad2antrr |
|
54 |
37
|
simp3d |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
|
simprl |
|
58 |
|
1rp |
|
59 |
|
rpaddcl |
|
60 |
57 58 59
|
sylancl |
|
61 |
57
|
rpge0d |
|
62 |
|
1re |
|
63 |
57
|
rpred |
|
64 |
|
addge02 |
|
65 |
62 63 64
|
sylancr |
|
66 |
61 65
|
mpbid |
|
67 |
60 66
|
jca |
|
68 |
57
|
rpxrd |
|
69 |
63
|
lep1d |
|
70 |
|
df-ico |
|
71 |
|
xrletr |
|
72 |
70 70 71
|
ixxss1 |
|
73 |
68 69 72
|
syl2anc |
|
74 |
|
simprr |
|
75 |
|
ssralv |
|
76 |
73 74 75
|
sylc |
|
77 |
1 33 50 51 52 6 7 53 43 54 55 56 67 76
|
pntlemp |
|
78 |
|
rpre |
|
79 |
78
|
adantl |
|
80 |
79
|
leidd |
|
81 |
|
elicopnf |
|
82 |
79 81
|
syl |
|
83 |
79 80 82
|
mpbir2and |
|
84 |
|
fveq2 |
|
85 |
|
id |
|
86 |
84 85
|
oveq12d |
|
87 |
86
|
fveq2d |
|
88 |
87
|
breq1d |
|
89 |
88
|
rspcv |
|
90 |
83 89
|
syl |
|
91 |
1
|
pntrf |
|
92 |
91
|
ffvelrni |
|
93 |
|
rerpdivcl |
|
94 |
92 93
|
mpancom |
|
95 |
94
|
adantl |
|
96 |
95
|
recnd |
|
97 |
96
|
absge0d |
|
98 |
96
|
abscld |
|
99 |
49
|
adantr |
|
100 |
|
letr |
|
101 |
32 98 99 100
|
mp3an2i |
|
102 |
97 101
|
mpand |
|
103 |
90 102
|
syld |
|
104 |
103
|
rexlimdva |
|
105 |
77 104
|
mpd |
|
106 |
47
|
rpge0d |
|
107 |
38 48
|
subge02d |
|
108 |
106 107
|
mpbid |
|
109 |
49 38 34 108 54
|
letrd |
|
110 |
|
elicc2 |
|
111 |
32 34 110
|
sylancr |
|
112 |
49 105 109 111
|
mpbir3and |
|
113 |
112 77
|
jca |
|
114 |
113
|
rexlimdvaa |
|
115 |
30 114
|
syl5bi |
|
116 |
115
|
anassrs |
|
117 |
116
|
expimpd |
|
118 |
|
breq2 |
|
119 |
118
|
rexralbidv |
|
120 |
119
|
elrab |
|
121 |
|
breq2 |
|
122 |
121
|
rexralbidv |
|
123 |
|
fveq2 |
|
124 |
|
id |
|
125 |
123 124
|
oveq12d |
|
126 |
125
|
fveq2d |
|
127 |
126
|
breq1d |
|
128 |
127
|
cbvralvw |
|
129 |
|
oveq1 |
|
130 |
129
|
raleqdv |
|
131 |
128 130
|
syl5bb |
|
132 |
131
|
cbvrexvw |
|
133 |
122 132
|
bitr4di |
|
134 |
133
|
elrab |
|
135 |
117 120 134
|
3imtr4g |
|
136 |
135
|
imp |
|
137 |
136
|
an32s |
|
138 |
27 137
|
pm2.61dane |
|
139 |
1 2 3 9 11 138
|
pntlem3 |
|