| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
|
pntlem1.y |
|
| 12 |
|
pntlem1.x |
|
| 13 |
|
pntlem1.c |
|
| 14 |
|
pntlem1.w |
|
| 15 |
|
pntlem1.z |
|
| 16 |
|
pntlem1.m |
|
| 17 |
|
pntlem1.n |
|
| 18 |
|
pntlem1.U |
|
| 19 |
7
|
adantr |
|
| 20 |
19
|
rpred |
|
| 21 |
|
simprl |
|
| 22 |
20 21
|
nndivred |
|
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
| 24 |
23
|
simp1d |
|
| 25 |
24
|
adantr |
|
| 26 |
21
|
nnrpd |
|
| 27 |
25 26
|
rpdivcld |
|
| 28 |
1
|
pntrf |
|
| 29 |
28
|
ffvelcdmi |
|
| 30 |
27 29
|
syl |
|
| 31 |
30 25
|
rerpdivcld |
|
| 32 |
31
|
recnd |
|
| 33 |
32
|
abscld |
|
| 34 |
22 33
|
resubcld |
|
| 35 |
26
|
relogcld |
|
| 36 |
30
|
recnd |
|
| 37 |
25
|
rpcnne0d |
|
| 38 |
26
|
rpcnne0d |
|
| 39 |
|
divdiv2 |
|
| 40 |
36 37 38 39
|
syl3anc |
|
| 41 |
21
|
nncnd |
|
| 42 |
|
div23 |
|
| 43 |
36 41 37 42
|
syl3anc |
|
| 44 |
40 43
|
eqtrd |
|
| 45 |
44
|
fveq2d |
|
| 46 |
32 41
|
absmuld |
|
| 47 |
26
|
rprege0d |
|
| 48 |
|
absid |
|
| 49 |
47 48
|
syl |
|
| 50 |
49
|
oveq2d |
|
| 51 |
45 46 50
|
3eqtrd |
|
| 52 |
|
fveq2 |
|
| 53 |
|
id |
|
| 54 |
52 53
|
oveq12d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
55
|
breq1d |
|
| 57 |
18
|
adantr |
|
| 58 |
27
|
rpred |
|
| 59 |
|
simprr |
|
| 60 |
26
|
rpred |
|
| 61 |
25
|
rpred |
|
| 62 |
11
|
simpld |
|
| 63 |
62
|
adantr |
|
| 64 |
60 61 63
|
lemuldiv2d |
|
| 65 |
59 64
|
mpbird |
|
| 66 |
63
|
rpred |
|
| 67 |
66 61 26
|
lemuldivd |
|
| 68 |
65 67
|
mpbid |
|
| 69 |
|
elicopnf |
|
| 70 |
66 69
|
syl |
|
| 71 |
58 68 70
|
mpbir2and |
|
| 72 |
56 57 71
|
rspcdva |
|
| 73 |
51 72
|
eqbrtrrd |
|
| 74 |
33 20 26
|
lemuldivd |
|
| 75 |
73 74
|
mpbid |
|
| 76 |
22 33
|
subge0d |
|
| 77 |
75 76
|
mpbird |
|
| 78 |
|
log1 |
|
| 79 |
|
nnge1 |
|
| 80 |
79
|
ad2antrl |
|
| 81 |
|
1rp |
|
| 82 |
|
logleb |
|
| 83 |
81 26 82
|
sylancr |
|
| 84 |
80 83
|
mpbid |
|
| 85 |
78 84
|
eqbrtrrid |
|
| 86 |
34 35 77 85
|
mulge0d |
|