Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|
2 |
|
pntlem1.a |
|
3 |
|
pntlem1.b |
|
4 |
|
pntlem1.l |
|
5 |
|
pntlem1.d |
|
6 |
|
pntlem1.f |
|
7 |
|
pntlem1.u |
|
8 |
|
pntlem1.u2 |
|
9 |
|
pntlem1.e |
|
10 |
|
pntlem1.k |
|
11 |
|
pntlem1.y |
|
12 |
|
pntlem1.x |
|
13 |
|
pntlem1.c |
|
14 |
|
pntlem1.w |
|
15 |
|
pntlem1.z |
|
16 |
|
pntlem1.m |
|
17 |
|
pntlem1.n |
|
18 |
|
pntlem1.U |
|
19 |
7
|
adantr |
|
20 |
19
|
rpred |
|
21 |
|
simprl |
|
22 |
20 21
|
nndivred |
|
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|
24 |
23
|
simp1d |
|
25 |
24
|
adantr |
|
26 |
21
|
nnrpd |
|
27 |
25 26
|
rpdivcld |
|
28 |
1
|
pntrf |
|
29 |
28
|
ffvelrni |
|
30 |
27 29
|
syl |
|
31 |
30 25
|
rerpdivcld |
|
32 |
31
|
recnd |
|
33 |
32
|
abscld |
|
34 |
22 33
|
resubcld |
|
35 |
26
|
relogcld |
|
36 |
30
|
recnd |
|
37 |
25
|
rpcnne0d |
|
38 |
26
|
rpcnne0d |
|
39 |
|
divdiv2 |
|
40 |
36 37 38 39
|
syl3anc |
|
41 |
21
|
nncnd |
|
42 |
|
div23 |
|
43 |
36 41 37 42
|
syl3anc |
|
44 |
40 43
|
eqtrd |
|
45 |
44
|
fveq2d |
|
46 |
32 41
|
absmuld |
|
47 |
26
|
rprege0d |
|
48 |
|
absid |
|
49 |
47 48
|
syl |
|
50 |
49
|
oveq2d |
|
51 |
45 46 50
|
3eqtrd |
|
52 |
|
fveq2 |
|
53 |
|
id |
|
54 |
52 53
|
oveq12d |
|
55 |
54
|
fveq2d |
|
56 |
55
|
breq1d |
|
57 |
18
|
adantr |
|
58 |
27
|
rpred |
|
59 |
|
simprr |
|
60 |
26
|
rpred |
|
61 |
25
|
rpred |
|
62 |
11
|
simpld |
|
63 |
62
|
adantr |
|
64 |
60 61 63
|
lemuldiv2d |
|
65 |
59 64
|
mpbird |
|
66 |
63
|
rpred |
|
67 |
66 61 26
|
lemuldivd |
|
68 |
65 67
|
mpbid |
|
69 |
|
elicopnf |
|
70 |
66 69
|
syl |
|
71 |
58 68 70
|
mpbir2and |
|
72 |
56 57 71
|
rspcdva |
|
73 |
51 72
|
eqbrtrrd |
|
74 |
33 20 26
|
lemuldivd |
|
75 |
73 74
|
mpbid |
|
76 |
22 33
|
subge0d |
|
77 |
75 76
|
mpbird |
|
78 |
|
log1 |
|
79 |
|
nnge1 |
|
80 |
79
|
ad2antrl |
|
81 |
|
1rp |
|
82 |
|
logleb |
|
83 |
81 26 82
|
sylancr |
|
84 |
80 83
|
mpbid |
|
85 |
78 84
|
eqbrtrrid |
|
86 |
34 35 77 85
|
mulge0d |
|