Metamath Proof Explorer


Theorem pntlemq

Description: Lemma for pntlemj . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
pntlem1.U φ z Y +∞ R z z U
pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
pntlem1.o O = Z K J + 1 + 1 Z K J
pntlem1.v φ V +
pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
pntlem1.j φ J M ..^ N
pntlem1.i I = Z 1 + L E V + 1 Z V
Assertion pntlemq φ I O

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 pntlem1.U φ z Y +∞ R z z U
19 pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
20 pntlem1.o O = Z K J + 1 + 1 Z K J
21 pntlem1.v φ V +
22 pntlem1.V φ K J < V 1 + L E V < K K J u V 1 + L E V R u u E
23 pntlem1.j φ J M ..^ N
24 pntlem1.i I = Z 1 + L E V + 1 Z V
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
26 25 simp1d φ Z +
27 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
28 27 simp2d φ K +
29 elfzoelz J M ..^ N J
30 23 29 syl φ J
31 30 peano2zd φ J + 1
32 28 31 rpexpcld φ K J + 1 +
33 26 32 rpdivcld φ Z K J + 1 +
34 33 rpred φ Z K J + 1
35 34 flcld φ Z K J + 1
36 1rp 1 +
37 1 2 3 4 5 6 pntlemd φ L + D + F +
38 37 simp1d φ L +
39 27 simp1d φ E +
40 38 39 rpmulcld φ L E +
41 rpaddcl 1 + L E + 1 + L E +
42 36 40 41 sylancr φ 1 + L E +
43 42 21 rpmulcld φ 1 + L E V +
44 26 43 rpdivcld φ Z 1 + L E V +
45 44 rpred φ Z 1 + L E V
46 45 flcld φ Z 1 + L E V
47 43 rpred φ 1 + L E V
48 32 rpred φ K J + 1
49 22 simpld φ K J < V 1 + L E V < K K J
50 49 simprd φ 1 + L E V < K K J
51 28 rpcnd φ K
52 28 30 rpexpcld φ K J +
53 52 rpcnd φ K J
54 51 53 mulcomd φ K K J = K J K
55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemg φ M N M log Z log K 4 N M
56 55 simp1d φ M
57 elfzouz J M ..^ N J M
58 23 57 syl φ J M
59 eluznn M J M J
60 56 58 59 syl2anc φ J
61 60 nnnn0d φ J 0
62 51 61 expp1d φ K J + 1 = K J K
63 54 62 eqtr4d φ K K J = K J + 1
64 50 63 breqtrd φ 1 + L E V < K J + 1
65 47 48 64 ltled φ 1 + L E V K J + 1
66 43 32 26 lediv2d φ 1 + L E V K J + 1 Z K J + 1 Z 1 + L E V
67 65 66 mpbid φ Z K J + 1 Z 1 + L E V
68 flwordi Z K J + 1 Z 1 + L E V Z K J + 1 Z 1 + L E V Z K J + 1 Z 1 + L E V
69 34 45 67 68 syl3anc φ Z K J + 1 Z 1 + L E V
70 eluz2 Z 1 + L E V Z K J + 1 Z K J + 1 Z 1 + L E V Z K J + 1 Z 1 + L E V
71 35 46 69 70 syl3anbrc φ Z 1 + L E V Z K J + 1
72 eluzp1p1 Z 1 + L E V Z K J + 1 Z 1 + L E V + 1 Z K J + 1 + 1
73 fzss1 Z 1 + L E V + 1 Z K J + 1 + 1 Z 1 + L E V + 1 Z V Z K J + 1 + 1 Z V
74 71 72 73 3syl φ Z 1 + L E V + 1 Z V Z K J + 1 + 1 Z V
75 26 21 rpdivcld φ Z V +
76 75 rpred φ Z V
77 76 flcld φ Z V
78 26 52 rpdivcld φ Z K J +
79 78 rpred φ Z K J
80 79 flcld φ Z K J
81 52 rpred φ K J
82 21 rpred φ V
83 49 simpld φ K J < V
84 81 82 83 ltled φ K J V
85 52 21 26 lediv2d φ K J V Z V Z K J
86 84 85 mpbid φ Z V Z K J
87 flwordi Z V Z K J Z V Z K J Z V Z K J
88 76 79 86 87 syl3anc φ Z V Z K J
89 eluz2 Z K J Z V Z V Z K J Z V Z K J
90 77 80 88 89 syl3anbrc φ Z K J Z V
91 fzss2 Z K J Z V Z K J + 1 + 1 Z V Z K J + 1 + 1 Z K J
92 90 91 syl φ Z K J + 1 + 1 Z V Z K J + 1 + 1 Z K J
93 74 92 sstrd φ Z 1 + L E V + 1 Z V Z K J + 1 + 1 Z K J
94 93 24 20 3sstr4g φ I O