Step |
Hyp |
Ref |
Expression |
1 |
|
pntibnd.r |
|
2 |
1
|
pntrsumbnd2 |
|
3 |
|
simpl |
|
4 |
|
2rp |
|
5 |
|
rpaddcl |
|
6 |
3 4 5
|
sylancl |
|
7 |
|
2re |
|
8 |
|
elioore |
|
9 |
8
|
adantl |
|
10 |
|
eliooord |
|
11 |
10
|
adantl |
|
12 |
11
|
simpld |
|
13 |
9 12
|
elrpd |
|
14 |
|
rerpdivcl |
|
15 |
7 13 14
|
sylancr |
|
16 |
15
|
rpefcld |
|
17 |
|
simpllr |
|
18 |
|
eqid |
|
19 |
|
simplrr |
|
20 |
|
simp-4l |
|
21 |
|
simp-4r |
|
22 |
|
eqid |
|
23 |
|
simplrl |
|
24 |
|
simpr |
|
25 |
1 17 18 19 20 21 22 23 24
|
pntpbnd2 |
|
26 |
|
iman |
|
27 |
25 26
|
mpbir |
|
28 |
27
|
ralrimivva |
|
29 |
|
oveq1 |
|
30 |
29
|
raleqdv |
|
31 |
30
|
ralbidv |
|
32 |
31
|
rspcev |
|
33 |
16 28 32
|
syl2anc |
|
34 |
33
|
ralrimiva |
|
35 |
|
fvoveq1 |
|
36 |
35
|
oveq1d |
|
37 |
36
|
raleqdv |
|
38 |
37
|
rexbidv |
|
39 |
38
|
ralbidv |
|
40 |
39
|
rspcev |
|
41 |
6 34 40
|
syl2anc |
|
42 |
41
|
rexlimiva |
|
43 |
2 42
|
ax-mp |
|