| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntibnd.r |  | 
						
							| 2 | 1 | pntrsumbnd2 |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | 2rp |  | 
						
							| 5 |  | rpaddcl |  | 
						
							| 6 | 3 4 5 | sylancl |  | 
						
							| 7 |  | 2re |  | 
						
							| 8 |  | elioore |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | eliooord |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 11 | simpld |  | 
						
							| 13 | 9 12 | elrpd |  | 
						
							| 14 |  | rerpdivcl |  | 
						
							| 15 | 7 13 14 | sylancr |  | 
						
							| 16 | 15 | rpefcld |  | 
						
							| 17 |  | simpllr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | simplrr |  | 
						
							| 20 |  | simp-4l |  | 
						
							| 21 |  | simp-4r |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | simplrl |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 1 17 18 19 20 21 22 23 24 | pntpbnd2 |  | 
						
							| 26 |  | iman |  | 
						
							| 27 | 25 26 | mpbir |  | 
						
							| 28 | 27 | ralrimivva |  | 
						
							| 29 |  | oveq1 |  | 
						
							| 30 | 29 | raleqdv |  | 
						
							| 31 | 30 | ralbidv |  | 
						
							| 32 | 31 | rspcev |  | 
						
							| 33 | 16 28 32 | syl2anc |  | 
						
							| 34 | 33 | ralrimiva |  | 
						
							| 35 |  | fvoveq1 |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 | 36 | raleqdv |  | 
						
							| 38 | 37 | rexbidv |  | 
						
							| 39 | 38 | ralbidv |  | 
						
							| 40 | 39 | rspcev |  | 
						
							| 41 | 6 34 40 | syl2anc |  | 
						
							| 42 | 41 | rexlimiva |  | 
						
							| 43 | 2 42 | ax-mp |  |