Metamath Proof Explorer


Theorem pntpbnd

Description: Lemma for pnt . Establish smallness of R at a point. Lemma 10.6.1 in Shapiro, p. 436. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypothesis pntibnd.r R = a + ψ a a
Assertion pntpbnd c + e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e

Proof

Step Hyp Ref Expression
1 pntibnd.r R = a + ψ a a
2 1 pntrsumbnd2 d + i j n = i j R n n n + 1 d
3 simpl d + i j n = i j R n n n + 1 d d +
4 2rp 2 +
5 rpaddcl d + 2 + d + 2 +
6 3 4 5 sylancl d + i j n = i j R n n n + 1 d d + 2 +
7 2re 2
8 elioore e 0 1 e
9 8 adantl d + i j n = i j R n n n + 1 d e 0 1 e
10 eliooord e 0 1 0 < e e < 1
11 10 adantl d + i j n = i j R n n n + 1 d e 0 1 0 < e e < 1
12 11 simpld d + i j n = i j R n n n + 1 d e 0 1 0 < e
13 9 12 elrpd d + i j n = i j R n n n + 1 d e 0 1 e +
14 rerpdivcl 2 e + 2 e
15 7 13 14 sylancr d + i j n = i j R n n n + 1 d e 0 1 2 e
16 15 rpefcld d + i j n = i j R n n n + 1 d e 0 1 e 2 e +
17 simpllr d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e e 0 1
18 eqid e 2 e = e 2 e
19 simplrr d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e y e 2 e +∞
20 simp-4l d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e d +
21 simp-4r d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e i j n = i j R n n n + 1 d
22 eqid d + 2 = d + 2
23 simplrl d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e k e d + 2 e +∞
24 simpr d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e ¬ n y < n n k y R n n e
25 1 17 18 19 20 21 22 23 24 pntpbnd2 ¬ d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e
26 iman d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ n y < n n k y R n n e ¬ d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ ¬ n y < n n k y R n n e
27 25 26 mpbir d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ n y < n n k y R n n e
28 27 ralrimivva d + i j n = i j R n n n + 1 d e 0 1 k e d + 2 e +∞ y e 2 e +∞ n y < n n k y R n n e
29 oveq1 x = e 2 e x +∞ = e 2 e +∞
30 29 raleqdv x = e 2 e y x +∞ n y < n n k y R n n e y e 2 e +∞ n y < n n k y R n n e
31 30 ralbidv x = e 2 e k e d + 2 e +∞ y x +∞ n y < n n k y R n n e k e d + 2 e +∞ y e 2 e +∞ n y < n n k y R n n e
32 31 rspcev e 2 e + k e d + 2 e +∞ y e 2 e +∞ n y < n n k y R n n e x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
33 16 28 32 syl2anc d + i j n = i j R n n n + 1 d e 0 1 x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
34 33 ralrimiva d + i j n = i j R n n n + 1 d e 0 1 x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
35 fvoveq1 c = d + 2 e c e = e d + 2 e
36 35 oveq1d c = d + 2 e c e +∞ = e d + 2 e +∞
37 36 raleqdv c = d + 2 k e c e +∞ y x +∞ n y < n n k y R n n e k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
38 37 rexbidv c = d + 2 x + k e c e +∞ y x +∞ n y < n n k y R n n e x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
39 38 ralbidv c = d + 2 e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e e 0 1 x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e
40 39 rspcev d + 2 + e 0 1 x + k e d + 2 e +∞ y x +∞ n y < n n k y R n n e c + e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e
41 6 34 40 syl2anc d + i j n = i j R n n n + 1 d c + e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e
42 41 rexlimiva d + i j n = i j R n n n + 1 d c + e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e
43 2 42 ax-mp c + e 0 1 x + k e c e +∞ y x +∞ n y < n n k y R n n e