Step |
Hyp |
Ref |
Expression |
1 |
|
pntpbnd.r |
|
2 |
|
ioossre |
|
3 |
2
|
a1i |
|
4 |
|
1red |
|
5 |
3
|
sselda |
|
6 |
|
1rp |
|
7 |
6
|
a1i |
|
8 |
|
1red |
|
9 |
|
eliooord |
|
10 |
9
|
adantl |
|
11 |
10
|
simpld |
|
12 |
8 5 11
|
ltled |
|
13 |
5 7 12
|
rpgecld |
|
14 |
1
|
pntrf |
|
15 |
14
|
ffvelrni |
|
16 |
13 15
|
syl |
|
17 |
16
|
recnd |
|
18 |
17
|
abscld |
|
19 |
13
|
relogcld |
|
20 |
18 19
|
remulcld |
|
21 |
|
2re |
|
22 |
21
|
a1i |
|
23 |
5 11
|
rplogcld |
|
24 |
22 23
|
rerpdivcld |
|
25 |
|
fzfid |
|
26 |
13
|
adantr |
|
27 |
|
elfznn |
|
28 |
27
|
adantl |
|
29 |
28
|
nnrpd |
|
30 |
26 29
|
rpdivcld |
|
31 |
14
|
ffvelrni |
|
32 |
30 31
|
syl |
|
33 |
32
|
recnd |
|
34 |
33
|
abscld |
|
35 |
29
|
relogcld |
|
36 |
34 35
|
remulcld |
|
37 |
25 36
|
fsumrecl |
|
38 |
24 37
|
remulcld |
|
39 |
20 38
|
resubcld |
|
40 |
39 13
|
rerpdivcld |
|
41 |
1
|
pntrmax |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
simprl |
|
45 |
|
simprr |
|
46 |
|
simpll |
|
47 |
|
simplr |
|
48 |
42 1 43 44 45 46 47
|
pntrlog2bndlem6 |
|
49 |
48
|
rexlimdvaa |
|
50 |
41 49
|
mpi |
|
51 |
|
simprl |
|
52 |
|
chpcl |
|
53 |
51 52
|
syl |
|
54 |
53 51
|
readdcld |
|
55 |
6
|
a1i |
|
56 |
|
simprr |
|
57 |
51 55 56
|
rpgecld |
|
58 |
57
|
relogcld |
|
59 |
54 58
|
remulcld |
|
60 |
40
|
adantr |
|
61 |
53
|
ad2ant2r |
|
62 |
|
simprll |
|
63 |
61 62
|
readdcld |
|
64 |
57
|
ad2ant2r |
|
65 |
64
|
relogcld |
|
66 |
63 65
|
remulcld |
|
67 |
13
|
adantr |
|
68 |
66 67
|
rerpdivcld |
|
69 |
16
|
adantr |
|
70 |
69
|
recnd |
|
71 |
70
|
abscld |
|
72 |
67
|
relogcld |
|
73 |
71 72
|
remulcld |
|
74 |
24
|
adantr |
|
75 |
37
|
adantr |
|
76 |
74 75
|
remulcld |
|
77 |
73 76
|
resubcld |
|
78 |
21
|
a1i |
|
79 |
5
|
adantr |
|
80 |
11
|
adantr |
|
81 |
79 80
|
rplogcld |
|
82 |
|
2rp |
|
83 |
82
|
a1i |
|
84 |
83
|
rpge0d |
|
85 |
78 81 84
|
divge0d |
|
86 |
|
fzfid |
|
87 |
36
|
adantlr |
|
88 |
33
|
adantlr |
|
89 |
88
|
abscld |
|
90 |
29
|
adantlr |
|
91 |
90
|
relogcld |
|
92 |
88
|
absge0d |
|
93 |
90
|
rpred |
|
94 |
27
|
adantl |
|
95 |
94
|
nnge1d |
|
96 |
93 95
|
logge0d |
|
97 |
89 91 92 96
|
mulge0d |
|
98 |
86 87 97
|
fsumge0 |
|
99 |
74 75 85 98
|
mulge0d |
|
100 |
73 76
|
subge02d |
|
101 |
99 100
|
mpbid |
|
102 |
70
|
absge0d |
|
103 |
81
|
rpge0d |
|
104 |
|
chpcl |
|
105 |
79 104
|
syl |
|
106 |
105 79
|
readdcld |
|
107 |
1
|
pntrval |
|
108 |
67 107
|
syl |
|
109 |
108
|
fveq2d |
|
110 |
105
|
recnd |
|
111 |
79
|
recnd |
|
112 |
110 111
|
abs2dif2d |
|
113 |
|
chpge0 |
|
114 |
79 113
|
syl |
|
115 |
105 114
|
absidd |
|
116 |
67
|
rpge0d |
|
117 |
79 116
|
absidd |
|
118 |
115 117
|
oveq12d |
|
119 |
112 118
|
breqtrd |
|
120 |
109 119
|
eqbrtrd |
|
121 |
|
simprr |
|
122 |
79 62 121
|
ltled |
|
123 |
|
chpwordi |
|
124 |
79 62 122 123
|
syl3anc |
|
125 |
105 79 61 62 124 122
|
le2addd |
|
126 |
71 106 63 120 125
|
letrd |
|
127 |
67 64
|
logled |
|
128 |
122 127
|
mpbid |
|
129 |
71 63 72 65 102 103 126 128
|
lemul12ad |
|
130 |
77 73 66 101 129
|
letrd |
|
131 |
77 66 67 130
|
lediv1dd |
|
132 |
6
|
a1i |
|
133 |
|
chpge0 |
|
134 |
62 133
|
syl |
|
135 |
64
|
rpge0d |
|
136 |
61 62 134 135
|
addge0d |
|
137 |
|
simprlr |
|
138 |
62 137
|
logge0d |
|
139 |
63 65 136 138
|
mulge0d |
|
140 |
12
|
adantr |
|
141 |
132 67 66 139 140
|
lediv2ad |
|
142 |
61
|
recnd |
|
143 |
62
|
recnd |
|
144 |
142 143
|
addcld |
|
145 |
65
|
recnd |
|
146 |
144 145
|
mulcld |
|
147 |
146
|
div1d |
|
148 |
141 147
|
breqtrd |
|
149 |
60 68 66 131 148
|
letrd |
|
150 |
3 4 40 50 59 149
|
lo1bddrp |
|