Metamath Proof Explorer


Theorem pntrlog2bndlem1

Description: The sum of selberg3r and selberg4r . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S = a i = 1 a Λ i log i + ψ a i
pntrlog2bnd.r R = a + ψ a a
Assertion pntrlog2bndlem1 x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 pntrlog2bnd.r R = a + ψ a a
3 1red 1
4 2 selberg34r x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1
5 elioore x 1 +∞ x
6 5 adantl x 1 +∞ x
7 1rp 1 +
8 7 a1i x 1 +∞ 1 +
9 1red x 1 +∞ 1
10 eliooord x 1 +∞ 1 < x x < +∞
11 10 adantl x 1 +∞ 1 < x x < +∞
12 11 simpld x 1 +∞ 1 < x
13 9 6 12 ltled x 1 +∞ 1 x
14 6 8 13 rpgecld x 1 +∞ x +
15 2 pntrf R : +
16 15 ffvelrni x + R x
17 14 16 syl x 1 +∞ R x
18 14 relogcld x 1 +∞ log x
19 17 18 remulcld x 1 +∞ R x log x
20 fzfid x 1 +∞ 1 x Fin
21 14 adantr x 1 +∞ n 1 x x +
22 elfznn n 1 x n
23 22 adantl x 1 +∞ n 1 x n
24 23 nnrpd x 1 +∞ n 1 x n +
25 21 24 rpdivcld x 1 +∞ n 1 x x n +
26 15 ffvelrni x n + R x n
27 25 26 syl x 1 +∞ n 1 x R x n
28 fzfid x 1 +∞ n 1 x 1 n Fin
29 dvdsssfz1 n y | y n 1 n
30 23 29 syl x 1 +∞ n 1 x y | y n 1 n
31 28 30 ssfid x 1 +∞ n 1 x y | y n Fin
32 ssrab2 y | y n
33 simpr x 1 +∞ n 1 x m y | y n m y | y n
34 32 33 sselid x 1 +∞ n 1 x m y | y n m
35 vmacl m Λ m
36 34 35 syl x 1 +∞ n 1 x m y | y n Λ m
37 dvdsdivcl n m y | y n n m y | y n
38 23 37 sylan x 1 +∞ n 1 x m y | y n n m y | y n
39 32 38 sselid x 1 +∞ n 1 x m y | y n n m
40 vmacl n m Λ n m
41 39 40 syl x 1 +∞ n 1 x m y | y n Λ n m
42 36 41 remulcld x 1 +∞ n 1 x m y | y n Λ m Λ n m
43 31 42 fsumrecl x 1 +∞ n 1 x m y | y n Λ m Λ n m
44 vmacl n Λ n
45 23 44 syl x 1 +∞ n 1 x Λ n
46 24 relogcld x 1 +∞ n 1 x log n
47 45 46 remulcld x 1 +∞ n 1 x Λ n log n
48 43 47 resubcld x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n
49 27 48 remulcld x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n
50 20 49 fsumrecl x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
51 6 12 rplogcld x 1 +∞ log x +
52 50 51 rerpdivcld x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
53 19 52 resubcld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
54 53 14 rerpdivcld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
55 54 recnd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
56 55 lo1o12 x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1 x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1
57 4 56 mpbii x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x 𝑂1
58 55 abscld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
59 17 recnd x 1 +∞ R x
60 59 abscld x 1 +∞ R x
61 60 18 remulcld x 1 +∞ R x log x
62 27 recnd x 1 +∞ n 1 x R x n
63 62 abscld x 1 +∞ n 1 x R x n
64 23 nnred x 1 +∞ n 1 x n
65 1 pntsf S :
66 65 ffvelrni n S n
67 64 66 syl x 1 +∞ n 1 x S n
68 1red x 1 +∞ n 1 x 1
69 64 68 resubcld x 1 +∞ n 1 x n 1
70 65 ffvelrni n 1 S n 1
71 69 70 syl x 1 +∞ n 1 x S n 1
72 67 71 resubcld x 1 +∞ n 1 x S n S n 1
73 63 72 remulcld x 1 +∞ n 1 x R x n S n S n 1
74 20 73 fsumrecl x 1 +∞ n = 1 x R x n S n S n 1
75 74 51 rerpdivcld x 1 +∞ n = 1 x R x n S n S n 1 log x
76 61 75 resubcld x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x
77 76 14 rerpdivcld x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x
78 18 recnd x 1 +∞ log x
79 59 78 mulcld x 1 +∞ R x log x
80 50 recnd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
81 51 rpne0d x 1 +∞ log x 0
82 80 78 81 divcld x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
83 79 82 subcld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
84 83 abscld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
85 80 abscld x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
86 85 51 rerpdivcld x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
87 61 86 resubcld x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
88 49 recnd x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n
89 88 abscld x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n
90 20 89 fsumrecl x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
91 20 88 fsumabs x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n n = 1 x R x n m y | y n Λ m Λ n m Λ n log n
92 48 recnd x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n
93 62 92 absmuld x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n = R x n m y | y n Λ m Λ n m Λ n log n
94 92 abscld x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n
95 62 absge0d x 1 +∞ n 1 x 0 R x n
96 43 recnd x 1 +∞ n 1 x m y | y n Λ m Λ n m
97 47 recnd x 1 +∞ n 1 x Λ n log n
98 96 97 abs2dif2d x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n m y | y n Λ m Λ n m + Λ n log n
99 71 recnd x 1 +∞ n 1 x S n 1
100 96 97 addcld x 1 +∞ n 1 x m y | y n Λ m Λ n m + Λ n log n
101 99 100 pncan2d x 1 +∞ n 1 x S n 1 + m y | y n Λ m Λ n m + Λ n log n - S n 1 = m y | y n Λ m Λ n m + Λ n log n
102 elfzuz n 1 x n 1
103 102 adantl x 1 +∞ n 1 x n 1
104 elfznn k 1 n k
105 104 adantl x 1 +∞ n 1 x k 1 n k
106 vmacl k Λ k
107 105 106 syl x 1 +∞ n 1 x k 1 n Λ k
108 105 nnrpd x 1 +∞ n 1 x k 1 n k +
109 108 relogcld x 1 +∞ n 1 x k 1 n log k
110 107 109 remulcld x 1 +∞ n 1 x k 1 n Λ k log k
111 fzfid x 1 +∞ n 1 x k 1 n 1 k Fin
112 dvdsssfz1 k y | y k 1 k
113 105 112 syl x 1 +∞ n 1 x k 1 n y | y k 1 k
114 111 113 ssfid x 1 +∞ n 1 x k 1 n y | y k Fin
115 ssrab2 y | y k
116 simpr x 1 +∞ n 1 x k 1 n m y | y k m y | y k
117 115 116 sselid x 1 +∞ n 1 x k 1 n m y | y k m
118 117 35 syl x 1 +∞ n 1 x k 1 n m y | y k Λ m
119 dvdsdivcl k m y | y k k m y | y k
120 105 119 sylan x 1 +∞ n 1 x k 1 n m y | y k k m y | y k
121 115 120 sselid x 1 +∞ n 1 x k 1 n m y | y k k m
122 vmacl k m Λ k m
123 121 122 syl x 1 +∞ n 1 x k 1 n m y | y k Λ k m
124 118 123 remulcld x 1 +∞ n 1 x k 1 n m y | y k Λ m Λ k m
125 114 124 fsumrecl x 1 +∞ n 1 x k 1 n m y | y k Λ m Λ k m
126 110 125 readdcld x 1 +∞ n 1 x k 1 n Λ k log k + m y | y k Λ m Λ k m
127 126 recnd x 1 +∞ n 1 x k 1 n Λ k log k + m y | y k Λ m Λ k m
128 fveq2 k = n Λ k = Λ n
129 fveq2 k = n log k = log n
130 128 129 oveq12d k = n Λ k log k = Λ n log n
131 breq2 k = n y k y n
132 131 rabbidv k = n y | y k = y | y n
133 fvoveq1 k = n Λ k m = Λ n m
134 133 oveq2d k = n Λ m Λ k m = Λ m Λ n m
135 134 adantr k = n m y | y n Λ m Λ k m = Λ m Λ n m
136 132 135 sumeq12rdv k = n m y | y k Λ m Λ k m = m y | y n Λ m Λ n m
137 130 136 oveq12d k = n Λ k log k + m y | y k Λ m Λ k m = Λ n log n + m y | y n Λ m Λ n m
138 103 127 137 fsumm1 x 1 +∞ n 1 x k = 1 n Λ k log k + m y | y k Λ m Λ k m = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m + Λ n log n + m y | y n Λ m Λ n m
139 1 pntsval2 n S n = k = 1 n Λ k log k + m y | y k Λ m Λ k m
140 64 139 syl x 1 +∞ n 1 x S n = k = 1 n Λ k log k + m y | y k Λ m Λ k m
141 23 nnzd x 1 +∞ n 1 x n
142 flid n n = n
143 141 142 syl x 1 +∞ n 1 x n = n
144 143 oveq2d x 1 +∞ n 1 x 1 n = 1 n
145 144 sumeq1d x 1 +∞ n 1 x k = 1 n Λ k log k + m y | y k Λ m Λ k m = k = 1 n Λ k log k + m y | y k Λ m Λ k m
146 140 145 eqtrd x 1 +∞ n 1 x S n = k = 1 n Λ k log k + m y | y k Λ m Λ k m
147 1 pntsval2 n 1 S n 1 = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m
148 69 147 syl x 1 +∞ n 1 x S n 1 = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m
149 1zzd x 1 +∞ n 1 x 1
150 141 149 zsubcld x 1 +∞ n 1 x n 1
151 flid n 1 n 1 = n 1
152 150 151 syl x 1 +∞ n 1 x n 1 = n 1
153 152 oveq2d x 1 +∞ n 1 x 1 n 1 = 1 n 1
154 153 sumeq1d x 1 +∞ n 1 x k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m
155 148 154 eqtrd x 1 +∞ n 1 x S n 1 = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m
156 96 97 addcomd x 1 +∞ n 1 x m y | y n Λ m Λ n m + Λ n log n = Λ n log n + m y | y n Λ m Λ n m
157 155 156 oveq12d x 1 +∞ n 1 x S n 1 + m y | y n Λ m Λ n m + Λ n log n = k = 1 n 1 Λ k log k + m y | y k Λ m Λ k m + Λ n log n + m y | y n Λ m Λ n m
158 138 146 157 3eqtr4d x 1 +∞ n 1 x S n = S n 1 + m y | y n Λ m Λ n m + Λ n log n
159 158 oveq1d x 1 +∞ n 1 x S n S n 1 = S n 1 + m y | y n Λ m Λ n m + Λ n log n - S n 1
160 vmage0 m 0 Λ m
161 34 160 syl x 1 +∞ n 1 x m y | y n 0 Λ m
162 vmage0 n m 0 Λ n m
163 39 162 syl x 1 +∞ n 1 x m y | y n 0 Λ n m
164 36 41 161 163 mulge0d x 1 +∞ n 1 x m y | y n 0 Λ m Λ n m
165 31 42 164 fsumge0 x 1 +∞ n 1 x 0 m y | y n Λ m Λ n m
166 43 165 absidd x 1 +∞ n 1 x m y | y n Λ m Λ n m = m y | y n Λ m Λ n m
167 vmage0 n 0 Λ n
168 23 167 syl x 1 +∞ n 1 x 0 Λ n
169 23 nnge1d x 1 +∞ n 1 x 1 n
170 64 169 logge0d x 1 +∞ n 1 x 0 log n
171 45 46 168 170 mulge0d x 1 +∞ n 1 x 0 Λ n log n
172 47 171 absidd x 1 +∞ n 1 x Λ n log n = Λ n log n
173 166 172 oveq12d x 1 +∞ n 1 x m y | y n Λ m Λ n m + Λ n log n = m y | y n Λ m Λ n m + Λ n log n
174 101 159 173 3eqtr4d x 1 +∞ n 1 x S n S n 1 = m y | y n Λ m Λ n m + Λ n log n
175 98 174 breqtrrd x 1 +∞ n 1 x m y | y n Λ m Λ n m Λ n log n S n S n 1
176 94 72 63 95 175 lemul2ad x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n R x n S n S n 1
177 93 176 eqbrtrd x 1 +∞ n 1 x R x n m y | y n Λ m Λ n m Λ n log n R x n S n S n 1
178 20 89 73 177 fsumle x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n n = 1 x R x n S n S n 1
179 85 90 74 91 178 letrd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n n = 1 x R x n S n S n 1
180 85 74 51 179 lediv1dd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x n = 1 x R x n S n S n 1 log x
181 86 75 61 180 lesub2dd x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
182 59 78 absmuld x 1 +∞ R x log x = R x log x
183 6 13 logge0d x 1 +∞ 0 log x
184 18 183 absidd x 1 +∞ log x = log x
185 184 oveq2d x 1 +∞ R x log x = R x log x
186 182 185 eqtrd x 1 +∞ R x log x = R x log x
187 80 78 81 absdivd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x = n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
188 184 oveq2d x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x = n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
189 187 188 eqtrd x 1 +∞ n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x = n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
190 186 189 oveq12d x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
191 79 82 abs2difd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
192 190 191 eqbrtrrd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
193 76 87 84 181 192 letrd x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
194 76 84 14 193 lediv1dd x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
195 53 recnd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x
196 6 recnd x 1 +∞ x
197 14 rpne0d x 1 +∞ x 0
198 195 196 197 absdivd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
199 14 rpge0d x 1 +∞ 0 x
200 6 199 absidd x 1 +∞ x = x
201 200 oveq2d x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
202 198 201 eqtrd x 1 +∞ R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x = R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
203 194 202 breqtrrd x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
204 203 adantrr x 1 +∞ 1 x R x log x n = 1 x R x n S n S n 1 log x x R x log x n = 1 x R x n m y | y n Λ m Λ n m Λ n log n log x x
205 3 57 58 77 204 lo1le x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x 𝑂1
206 205 mptru x 1 +∞ R x log x n = 1 x R x n S n S n 1 log x x 𝑂1