Metamath Proof Explorer


Theorem pntrlog2bndlem2

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S = a i = 1 a Λ i log i + ψ a i
pntrlog2bnd.r R = a + ψ a a
pntrlog2bndlem2.1 φ A +
pntrlog2bndlem2.2 φ y + ψ y A y
Assertion pntrlog2bndlem2 φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 pntrlog2bnd.r R = a + ψ a a
3 pntrlog2bndlem2.1 φ A +
4 pntrlog2bndlem2.2 φ y + ψ y A y
5 1red φ 1
6 elioore x 1 +∞ x
7 6 adantl φ x 1 +∞ x
8 chpcl x ψ x
9 7 8 syl φ x 1 +∞ ψ x
10 9 recnd φ x 1 +∞ ψ x
11 fzfid φ x 1 +∞ 1 x Fin
12 7 adantr φ x 1 +∞ n 1 x x
13 elfznn n 1 x n
14 13 adantl φ x 1 +∞ n 1 x n
15 14 peano2nnd φ x 1 +∞ n 1 x n + 1
16 12 15 nndivred φ x 1 +∞ n 1 x x n + 1
17 chpcl x n + 1 ψ x n + 1
18 16 17 syl φ x 1 +∞ n 1 x ψ x n + 1
19 18 16 readdcld φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1
20 11 19 fsumrecl φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1
21 20 recnd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1
22 7 recnd φ x 1 +∞ x
23 eliooord x 1 +∞ 1 < x x < +∞
24 23 adantl φ x 1 +∞ 1 < x x < +∞
25 24 simpld φ x 1 +∞ 1 < x
26 7 25 rplogcld φ x 1 +∞ log x +
27 26 rpcnd φ x 1 +∞ log x
28 22 27 mulcld φ x 1 +∞ x log x
29 1rp 1 +
30 29 a1i φ x 1 +∞ 1 +
31 1red φ x 1 +∞ 1
32 31 7 25 ltled φ x 1 +∞ 1 x
33 7 30 32 rpgecld φ x 1 +∞ x +
34 33 rpne0d φ x 1 +∞ x 0
35 26 rpne0d φ x 1 +∞ log x 0
36 22 27 34 35 mulne0d φ x 1 +∞ x log x 0
37 10 21 28 36 divdird φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x = ψ x x log x + n = 1 x ψ x n + 1 + x n + 1 x log x
38 37 mpteq2dva φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x = x 1 +∞ ψ x x log x + n = 1 x ψ x n + 1 + x n + 1 x log x
39 33 26 rpmulcld φ x 1 +∞ x log x +
40 9 39 rerpdivcld φ x 1 +∞ ψ x x log x
41 20 39 rerpdivcld φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x
42 10 22 27 34 35 divdiv1d φ x 1 +∞ ψ x x log x = ψ x x log x
43 9 33 rerpdivcld φ x 1 +∞ ψ x x
44 43 recnd φ x 1 +∞ ψ x x
45 44 27 35 divrecd φ x 1 +∞ ψ x x log x = ψ x x 1 log x
46 42 45 eqtr3d φ x 1 +∞ ψ x x log x = ψ x x 1 log x
47 46 mpteq2dva φ x 1 +∞ ψ x x log x = x 1 +∞ ψ x x 1 log x
48 26 rprecred φ x 1 +∞ 1 log x
49 33 ex φ x 1 +∞ x +
50 49 ssrdv φ 1 +∞ +
51 chpo1ub x + ψ x x 𝑂1
52 51 a1i φ x + ψ x x 𝑂1
53 50 52 o1res2 φ x 1 +∞ ψ x x 𝑂1
54 divlogrlim x 1 +∞ 1 log x 0
55 rlimo1 x 1 +∞ 1 log x 0 x 1 +∞ 1 log x 𝑂1
56 54 55 mp1i φ x 1 +∞ 1 log x 𝑂1
57 43 48 53 56 o1mul2 φ x 1 +∞ ψ x x 1 log x 𝑂1
58 47 57 eqeltrd φ x 1 +∞ ψ x x log x 𝑂1
59 3 rpred φ A
60 59 5 readdcld φ A + 1
61 60 adantr φ x 1 +∞ A + 1
62 31 48 readdcld φ x 1 +∞ 1 + 1 log x
63 ioossre 1 +∞
64 60 recnd φ A + 1
65 o1const 1 +∞ A + 1 x 1 +∞ A + 1 𝑂1
66 63 64 65 sylancr φ x 1 +∞ A + 1 𝑂1
67 1cnd φ 1
68 o1const 1 +∞ 1 x 1 +∞ 1 𝑂1
69 63 67 68 sylancr φ x 1 +∞ 1 𝑂1
70 31 48 69 56 o1add2 φ x 1 +∞ 1 + 1 log x 𝑂1
71 61 62 66 70 o1mul2 φ x 1 +∞ A + 1 1 + 1 log x 𝑂1
72 61 62 remulcld φ x 1 +∞ A + 1 1 + 1 log x
73 41 recnd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x
74 chpge0 x n + 1 0 ψ x n + 1
75 16 74 syl φ x 1 +∞ n 1 x 0 ψ x n + 1
76 14 nnrpd φ x 1 +∞ n 1 x n +
77 29 a1i φ x 1 +∞ n 1 x 1 +
78 76 77 rpaddcld φ x 1 +∞ n 1 x n + 1 +
79 33 adantr φ x 1 +∞ n 1 x x +
80 79 rpge0d φ x 1 +∞ n 1 x 0 x
81 12 78 80 divge0d φ x 1 +∞ n 1 x 0 x n + 1
82 18 16 75 81 addge0d φ x 1 +∞ n 1 x 0 ψ x n + 1 + x n + 1
83 11 19 82 fsumge0 φ x 1 +∞ 0 n = 1 x ψ x n + 1 + x n + 1
84 20 39 83 divge0d φ x 1 +∞ 0 n = 1 x ψ x n + 1 + x n + 1 x log x
85 41 84 absidd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x = n = 1 x ψ x n + 1 + x n + 1 x log x
86 72 recnd φ x 1 +∞ A + 1 1 + 1 log x
87 86 abscld φ x 1 +∞ A + 1 1 + 1 log x
88 20 33 rerpdivcld φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x
89 33 relogcld φ x 1 +∞ log x
90 89 31 readdcld φ x 1 +∞ log x + 1
91 61 90 remulcld φ x 1 +∞ A + 1 log x + 1
92 61 7 remulcld φ x 1 +∞ A + 1 x
93 14 nnrecred φ x 1 +∞ n 1 x 1 n
94 11 93 fsumrecl φ x 1 +∞ n = 1 x 1 n
95 92 94 remulcld φ x 1 +∞ A + 1 x n = 1 x 1 n
96 92 90 remulcld φ x 1 +∞ A + 1 x log x + 1
97 59 ad2antrr φ x 1 +∞ n 1 x A
98 1red φ x 1 +∞ n 1 x 1
99 97 98 readdcld φ x 1 +∞ n 1 x A + 1
100 99 12 remulcld φ x 1 +∞ n 1 x A + 1 x
101 100 93 remulcld φ x 1 +∞ n 1 x A + 1 x 1 n
102 100 15 nndivred φ x 1 +∞ n 1 x A + 1 x n + 1
103 100 14 nndivred φ x 1 +∞ n 1 x A + 1 x n
104 97 16 remulcld φ x 1 +∞ n 1 x A x n + 1
105 fveq2 y = x n + 1 ψ y = ψ x n + 1
106 oveq2 y = x n + 1 A y = A x n + 1
107 105 106 breq12d y = x n + 1 ψ y A y ψ x n + 1 A x n + 1
108 4 ad2antrr φ x 1 +∞ n 1 x y + ψ y A y
109 79 78 rpdivcld φ x 1 +∞ n 1 x x n + 1 +
110 107 108 109 rspcdva φ x 1 +∞ n 1 x ψ x n + 1 A x n + 1
111 18 104 16 110 leadd1dd φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1 A x n + 1 + x n + 1
112 64 ad2antrr φ x 1 +∞ n 1 x A + 1
113 22 adantr φ x 1 +∞ n 1 x x
114 14 nncnd φ x 1 +∞ n 1 x n
115 1cnd φ x 1 +∞ n 1 x 1
116 114 115 addcld φ x 1 +∞ n 1 x n + 1
117 15 nnne0d φ x 1 +∞ n 1 x n + 1 0
118 112 113 116 117 divassd φ x 1 +∞ n 1 x A + 1 x n + 1 = A + 1 x n + 1
119 97 recnd φ x 1 +∞ n 1 x A
120 113 116 117 divcld φ x 1 +∞ n 1 x x n + 1
121 119 115 120 adddird φ x 1 +∞ n 1 x A + 1 x n + 1 = A x n + 1 + 1 x n + 1
122 120 mulid2d φ x 1 +∞ n 1 x 1 x n + 1 = x n + 1
123 122 oveq2d φ x 1 +∞ n 1 x A x n + 1 + 1 x n + 1 = A x n + 1 + x n + 1
124 118 121 123 3eqtrd φ x 1 +∞ n 1 x A + 1 x n + 1 = A x n + 1 + x n + 1
125 111 124 breqtrrd φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1 A + 1 x n + 1
126 59 adantr φ x 1 +∞ A
127 3 adantr φ x 1 +∞ A +
128 127 rpge0d φ x 1 +∞ 0 A
129 30 rpge0d φ x 1 +∞ 0 1
130 126 31 128 129 addge0d φ x 1 +∞ 0 A + 1
131 33 rpge0d φ x 1 +∞ 0 x
132 61 7 130 131 mulge0d φ x 1 +∞ 0 A + 1 x
133 132 adantr φ x 1 +∞ n 1 x 0 A + 1 x
134 14 nnred φ x 1 +∞ n 1 x n
135 134 lep1d φ x 1 +∞ n 1 x n n + 1
136 76 78 100 133 135 lediv2ad φ x 1 +∞ n 1 x A + 1 x n + 1 A + 1 x n
137 19 102 103 125 136 letrd φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1 A + 1 x n
138 100 recnd φ x 1 +∞ n 1 x A + 1 x
139 14 nnne0d φ x 1 +∞ n 1 x n 0
140 138 114 139 divrecd φ x 1 +∞ n 1 x A + 1 x n = A + 1 x 1 n
141 137 140 breqtrd φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1 A + 1 x 1 n
142 11 19 101 141 fsumle φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 n = 1 x A + 1 x 1 n
143 92 recnd φ x 1 +∞ A + 1 x
144 114 139 reccld φ x 1 +∞ n 1 x 1 n
145 11 143 144 fsummulc2 φ x 1 +∞ A + 1 x n = 1 x 1 n = n = 1 x A + 1 x 1 n
146 142 145 breqtrrd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 A + 1 x n = 1 x 1 n
147 harmonicubnd x 1 x n = 1 x 1 n log x + 1
148 7 32 147 syl2anc φ x 1 +∞ n = 1 x 1 n log x + 1
149 94 90 92 132 148 lemul2ad φ x 1 +∞ A + 1 x n = 1 x 1 n A + 1 x log x + 1
150 20 95 96 146 149 letrd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 A + 1 x log x + 1
151 64 adantr φ x 1 +∞ A + 1
152 90 recnd φ x 1 +∞ log x + 1
153 151 22 152 mul32d φ x 1 +∞ A + 1 x log x + 1 = A + 1 log x + 1 x
154 150 153 breqtrd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 A + 1 log x + 1 x
155 20 91 33 ledivmul2d φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x A + 1 log x + 1 n = 1 x ψ x n + 1 + x n + 1 A + 1 log x + 1 x
156 154 155 mpbird φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x A + 1 log x + 1
157 88 91 26 156 lediv1dd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x A + 1 log x + 1 log x
158 21 22 27 34 35 divdiv1d φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x = n = 1 x ψ x n + 1 + x n + 1 x log x
159 1cnd φ x 1 +∞ 1
160 27 159 addcld φ x 1 +∞ log x + 1
161 151 160 27 35 divassd φ x 1 +∞ A + 1 log x + 1 log x = A + 1 log x + 1 log x
162 27 159 27 35 divdird φ x 1 +∞ log x + 1 log x = log x log x + 1 log x
163 27 35 dividd φ x 1 +∞ log x log x = 1
164 163 oveq1d φ x 1 +∞ log x log x + 1 log x = 1 + 1 log x
165 162 164 eqtr2d φ x 1 +∞ 1 + 1 log x = log x + 1 log x
166 165 oveq2d φ x 1 +∞ A + 1 1 + 1 log x = A + 1 log x + 1 log x
167 161 166 eqtr4d φ x 1 +∞ A + 1 log x + 1 log x = A + 1 1 + 1 log x
168 157 158 167 3brtr3d φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x A + 1 1 + 1 log x
169 72 leabsd φ x 1 +∞ A + 1 1 + 1 log x A + 1 1 + 1 log x
170 41 72 87 168 169 letrd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x A + 1 1 + 1 log x
171 85 170 eqbrtrd φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x A + 1 1 + 1 log x
172 171 adantrr φ x 1 +∞ 1 x n = 1 x ψ x n + 1 + x n + 1 x log x A + 1 1 + 1 log x
173 5 71 72 73 172 o1le φ x 1 +∞ n = 1 x ψ x n + 1 + x n + 1 x log x 𝑂1
174 40 41 58 173 o1add2 φ x 1 +∞ ψ x x log x + n = 1 x ψ x n + 1 + x n + 1 x log x 𝑂1
175 38 174 eqeltrd φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x 𝑂1
176 9 20 readdcld φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1
177 176 39 rerpdivcld φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
178 2 pntrf R : +
179 178 ffvelrni x n + 1 + R x n + 1
180 109 179 syl φ x 1 +∞ n 1 x R x n + 1
181 180 recnd φ x 1 +∞ n 1 x R x n + 1
182 79 76 rpdivcld φ x 1 +∞ n 1 x x n +
183 178 ffvelrni x n + R x n
184 182 183 syl φ x 1 +∞ n 1 x R x n
185 184 recnd φ x 1 +∞ n 1 x R x n
186 181 185 subcld φ x 1 +∞ n 1 x R x n + 1 R x n
187 186 abscld φ x 1 +∞ n 1 x R x n + 1 R x n
188 134 187 remulcld φ x 1 +∞ n 1 x n R x n + 1 R x n
189 11 188 fsumrecl φ x 1 +∞ n = 1 x n R x n + 1 R x n
190 189 39 rerpdivcld φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x
191 190 recnd φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x
192 76 rpge0d φ x 1 +∞ n 1 x 0 n
193 186 absge0d φ x 1 +∞ n 1 x 0 R x n + 1 R x n
194 134 187 192 193 mulge0d φ x 1 +∞ n 1 x 0 n R x n + 1 R x n
195 11 188 194 fsumge0 φ x 1 +∞ 0 n = 1 x n R x n + 1 R x n
196 189 39 195 divge0d φ x 1 +∞ 0 n = 1 x n R x n + 1 R x n x log x
197 190 196 absidd φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x = n = 1 x n R x n + 1 R x n x log x
198 10 21 addcld φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1
199 198 28 36 divcld φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
200 199 abscld φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
201 12 14 nndivred φ x 1 +∞ n 1 x x n
202 chpcl x n ψ x n
203 201 202 syl φ x 1 +∞ n 1 x ψ x n
204 203 201 readdcld φ x 1 +∞ n 1 x ψ x n + x n
205 204 19 resubcld φ x 1 +∞ n 1 x ψ x n + x n - ψ x n + 1 + x n + 1
206 134 205 remulcld φ x 1 +∞ n 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
207 2 pntrval x n + 1 + R x n + 1 = ψ x n + 1 x n + 1
208 109 207 syl φ x 1 +∞ n 1 x R x n + 1 = ψ x n + 1 x n + 1
209 2 pntrval x n + R x n = ψ x n x n
210 182 209 syl φ x 1 +∞ n 1 x R x n = ψ x n x n
211 208 210 oveq12d φ x 1 +∞ n 1 x R x n + 1 R x n = ψ x n + 1 - x n + 1 - ψ x n x n
212 18 recnd φ x 1 +∞ n 1 x ψ x n + 1
213 203 recnd φ x 1 +∞ n 1 x ψ x n
214 113 114 139 divcld φ x 1 +∞ n 1 x x n
215 212 120 213 214 sub4d φ x 1 +∞ n 1 x ψ x n + 1 - x n + 1 - ψ x n x n = ψ x n + 1 - ψ x n - x n + 1 x n
216 211 215 eqtrd φ x 1 +∞ n 1 x R x n + 1 R x n = ψ x n + 1 - ψ x n - x n + 1 x n
217 216 fveq2d φ x 1 +∞ n 1 x R x n + 1 R x n = ψ x n + 1 - ψ x n - x n + 1 x n
218 212 213 subcld φ x 1 +∞ n 1 x ψ x n + 1 ψ x n
219 120 214 subcld φ x 1 +∞ n 1 x x n + 1 x n
220 218 219 abs2dif2d φ x 1 +∞ n 1 x ψ x n + 1 - ψ x n - x n + 1 x n ψ x n + 1 ψ x n + x n + 1 x n
221 217 220 eqbrtrd φ x 1 +∞ n 1 x R x n + 1 R x n ψ x n + 1 ψ x n + x n + 1 x n
222 76 78 12 80 135 lediv2ad φ x 1 +∞ n 1 x x n + 1 x n
223 chpwordi x n + 1 x n x n + 1 x n ψ x n + 1 ψ x n
224 16 201 222 223 syl3anc φ x 1 +∞ n 1 x ψ x n + 1 ψ x n
225 18 203 224 abssuble0d φ x 1 +∞ n 1 x ψ x n + 1 ψ x n = ψ x n ψ x n + 1
226 16 201 222 abssuble0d φ x 1 +∞ n 1 x x n + 1 x n = x n x n + 1
227 225 226 oveq12d φ x 1 +∞ n 1 x ψ x n + 1 ψ x n + x n + 1 x n = ψ x n ψ x n + 1 + x n - x n + 1
228 213 214 212 120 addsub4d φ x 1 +∞ n 1 x ψ x n + x n - ψ x n + 1 + x n + 1 = ψ x n ψ x n + 1 + x n - x n + 1
229 227 228 eqtr4d φ x 1 +∞ n 1 x ψ x n + 1 ψ x n + x n + 1 x n = ψ x n + x n - ψ x n + 1 + x n + 1
230 221 229 breqtrd φ x 1 +∞ n 1 x R x n + 1 R x n ψ x n + x n - ψ x n + 1 + x n + 1
231 187 205 134 192 230 lemul2ad φ x 1 +∞ n 1 x n R x n + 1 R x n n ψ x n + x n - ψ x n + 1 + x n + 1
232 11 188 206 231 fsumle φ x 1 +∞ n = 1 x n R x n + 1 R x n n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
233 205 recnd φ x 1 +∞ n 1 x ψ x n + x n - ψ x n + 1 + x n + 1
234 114 233 mulcld φ x 1 +∞ n 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
235 11 234 fsumcl φ x 1 +∞ n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
236 10 21 negdi2d φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 = - ψ x - n = 1 x ψ x n + 1 + x n + 1
237 33 rprege0d φ x 1 +∞ x 0 x
238 flge0nn0 x 0 x x 0
239 nn0p1nn x 0 x + 1
240 237 238 239 3syl φ x 1 +∞ x + 1
241 7 240 nndivred φ x 1 +∞ x x + 1
242 2re 2
243 242 a1i φ x 1 +∞ 2
244 flltp1 x x < x + 1
245 7 244 syl φ x 1 +∞ x < x + 1
246 240 nncnd φ x 1 +∞ x + 1
247 246 mulid1d φ x 1 +∞ x + 1 1 = x + 1
248 245 247 breqtrrd φ x 1 +∞ x < x + 1 1
249 240 nnrpd φ x 1 +∞ x + 1 +
250 7 31 249 ltdivmuld φ x 1 +∞ x x + 1 < 1 x < x + 1 1
251 248 250 mpbird φ x 1 +∞ x x + 1 < 1
252 1lt2 1 < 2
253 252 a1i φ x 1 +∞ 1 < 2
254 241 31 243 251 253 lttrd φ x 1 +∞ x x + 1 < 2
255 chpeq0 x x + 1 ψ x x + 1 = 0 x x + 1 < 2
256 241 255 syl φ x 1 +∞ ψ x x + 1 = 0 x x + 1 < 2
257 254 256 mpbird φ x 1 +∞ ψ x x + 1 = 0
258 257 oveq1d φ x 1 +∞ ψ x x + 1 + x x + 1 = 0 + x x + 1
259 241 recnd φ x 1 +∞ x x + 1
260 259 addid2d φ x 1 +∞ 0 + x x + 1 = x x + 1
261 258 260 eqtrd φ x 1 +∞ ψ x x + 1 + x x + 1 = x x + 1
262 261 oveq2d φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 = x + 1 x x + 1
263 240 nnne0d φ x 1 +∞ x + 1 0
264 22 246 263 divcan2d φ x 1 +∞ x + 1 x x + 1 = x
265 262 264 eqtrd φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 = x
266 22 div1d φ x 1 +∞ x 1 = x
267 266 fveq2d φ x 1 +∞ ψ x 1 = ψ x
268 267 266 oveq12d φ x 1 +∞ ψ x 1 + x 1 = ψ x + x
269 268 oveq2d φ x 1 +∞ 1 ψ x 1 + x 1 = 1 ψ x + x
270 9 7 readdcld φ x 1 +∞ ψ x + x
271 270 recnd φ x 1 +∞ ψ x + x
272 271 mulid2d φ x 1 +∞ 1 ψ x + x = ψ x + x
273 269 272 eqtrd φ x 1 +∞ 1 ψ x 1 + x 1 = ψ x + x
274 265 273 oveq12d φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 1 ψ x 1 + x 1 = x ψ x + x
275 271 22 negsubdi2d φ x 1 +∞ ψ x + x - x = x ψ x + x
276 10 22 pncand φ x 1 +∞ ψ x + x - x = ψ x
277 276 negeqd φ x 1 +∞ ψ x + x - x = ψ x
278 274 275 277 3eqtr2d φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 1 ψ x 1 + x 1 = ψ x
279 7 flcld φ x 1 +∞ x
280 fzval3 x 1 x = 1 ..^ x + 1
281 279 280 syl φ x 1 +∞ 1 x = 1 ..^ x + 1
282 281 eqcomd φ x 1 +∞ 1 ..^ x + 1 = 1 x
283 114 115 pncan2d φ x 1 +∞ n 1 x n + 1 - n = 1
284 283 oveq1d φ x 1 +∞ n 1 x n + 1 - n ψ x n + 1 + x n + 1 = 1 ψ x n + 1 + x n + 1
285 19 recnd φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1
286 285 mulid2d φ x 1 +∞ n 1 x 1 ψ x n + 1 + x n + 1 = ψ x n + 1 + x n + 1
287 284 286 eqtrd φ x 1 +∞ n 1 x n + 1 - n ψ x n + 1 + x n + 1 = ψ x n + 1 + x n + 1
288 282 287 sumeq12rdv φ x 1 +∞ n 1 ..^ x + 1 n + 1 - n ψ x n + 1 + x n + 1 = n = 1 x ψ x n + 1 + x n + 1
289 278 288 oveq12d φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 - 1 ψ x 1 + x 1 - n 1 ..^ x + 1 n + 1 - n ψ x n + 1 + x n + 1 = - ψ x - n = 1 x ψ x n + 1 + x n + 1
290 oveq2 m = n x m = x n
291 290 fveq2d m = n ψ x m = ψ x n
292 291 290 oveq12d m = n ψ x m + x m = ψ x n + x n
293 292 ancli m = n m = n ψ x m + x m = ψ x n + x n
294 oveq2 m = n + 1 x m = x n + 1
295 294 fveq2d m = n + 1 ψ x m = ψ x n + 1
296 295 294 oveq12d m = n + 1 ψ x m + x m = ψ x n + 1 + x n + 1
297 296 ancli m = n + 1 m = n + 1 ψ x m + x m = ψ x n + 1 + x n + 1
298 oveq2 m = 1 x m = x 1
299 298 fveq2d m = 1 ψ x m = ψ x 1
300 299 298 oveq12d m = 1 ψ x m + x m = ψ x 1 + x 1
301 300 ancli m = 1 m = 1 ψ x m + x m = ψ x 1 + x 1
302 oveq2 m = x + 1 x m = x x + 1
303 302 fveq2d m = x + 1 ψ x m = ψ x x + 1
304 303 302 oveq12d m = x + 1 ψ x m + x m = ψ x x + 1 + x x + 1
305 304 ancli m = x + 1 m = x + 1 ψ x m + x m = ψ x x + 1 + x x + 1
306 nnuz = 1
307 240 306 eleqtrdi φ x 1 +∞ x + 1 1
308 elfznn m 1 x + 1 m
309 308 adantl φ x 1 +∞ m 1 x + 1 m
310 309 nncnd φ x 1 +∞ m 1 x + 1 m
311 7 adantr φ x 1 +∞ m 1 x + 1 x
312 311 309 nndivred φ x 1 +∞ m 1 x + 1 x m
313 chpcl x m ψ x m
314 312 313 syl φ x 1 +∞ m 1 x + 1 ψ x m
315 314 312 readdcld φ x 1 +∞ m 1 x + 1 ψ x m + x m
316 315 recnd φ x 1 +∞ m 1 x + 1 ψ x m + x m
317 293 297 301 305 307 310 316 fsumparts φ x 1 +∞ n 1 ..^ x + 1 n ψ x n + 1 + x n + 1 - ψ x n + x n = x + 1 ψ x x + 1 + x x + 1 - 1 ψ x 1 + x 1 - n 1 ..^ x + 1 n + 1 - n ψ x n + 1 + x n + 1
318 213 214 addcld φ x 1 +∞ n 1 x ψ x n + x n
319 212 120 addcld φ x 1 +∞ n 1 x ψ x n + 1 + x n + 1
320 318 319 negsubdi2d φ x 1 +∞ n 1 x ψ x n + x n - ψ x n + 1 + x n + 1 = ψ x n + 1 + x n + 1 - ψ x n + x n
321 320 oveq2d φ x 1 +∞ n 1 x n ψ x n + x n - ψ x n + 1 + x n + 1 = n ψ x n + 1 + x n + 1 - ψ x n + x n
322 114 233 mulneg2d φ x 1 +∞ n 1 x n ψ x n + x n - ψ x n + 1 + x n + 1 = n ψ x n + x n - ψ x n + 1 + x n + 1
323 321 322 eqtr3d φ x 1 +∞ n 1 x n ψ x n + 1 + x n + 1 - ψ x n + x n = n ψ x n + x n - ψ x n + 1 + x n + 1
324 282 323 sumeq12rdv φ x 1 +∞ n 1 ..^ x + 1 n ψ x n + 1 + x n + 1 - ψ x n + x n = n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
325 317 324 eqtr3d φ x 1 +∞ x + 1 ψ x x + 1 + x x + 1 - 1 ψ x 1 + x 1 - n 1 ..^ x + 1 n + 1 - n ψ x n + 1 + x n + 1 = n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
326 236 289 325 3eqtr2d φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 = n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
327 11 234 fsumneg φ x 1 +∞ n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1 = n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1
328 326 327 eqtr2d φ x 1 +∞ n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1 = ψ x + n = 1 x ψ x n + 1 + x n + 1
329 235 198 328 neg11d φ x 1 +∞ n = 1 x n ψ x n + x n - ψ x n + 1 + x n + 1 = ψ x + n = 1 x ψ x n + 1 + x n + 1
330 232 329 breqtrd φ x 1 +∞ n = 1 x n R x n + 1 R x n ψ x + n = 1 x ψ x n + 1 + x n + 1
331 189 176 39 330 lediv1dd φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
332 177 leabsd φ x 1 +∞ ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
333 190 177 200 331 332 letrd φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
334 197 333 eqbrtrd φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
335 334 adantrr φ x 1 +∞ 1 x n = 1 x n R x n + 1 R x n x log x ψ x + n = 1 x ψ x n + 1 + x n + 1 x log x
336 5 175 177 191 335 o1le φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x 𝑂1