Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|
2 |
|
pntrlog2bnd.r |
|
3 |
|
pntrlog2bndlem3.1 |
|
4 |
|
pntrlog2bndlem3.2 |
|
5 |
|
1red |
|
6 |
3
|
rpred |
|
7 |
6
|
adantr |
|
8 |
|
fzfid |
|
9 |
|
elfznn |
|
10 |
9
|
adantl |
|
11 |
10
|
nnred |
|
12 |
|
elioore |
|
13 |
12
|
adantl |
|
14 |
|
1rp |
|
15 |
14
|
a1i |
|
16 |
|
1red |
|
17 |
|
eliooord |
|
18 |
17
|
adantl |
|
19 |
18
|
simpld |
|
20 |
16 13 19
|
ltled |
|
21 |
13 15 20
|
rpgecld |
|
22 |
21
|
adantr |
|
23 |
10
|
nnrpd |
|
24 |
14
|
a1i |
|
25 |
23 24
|
rpaddcld |
|
26 |
22 25
|
rpdivcld |
|
27 |
2
|
pntrf |
|
28 |
27
|
ffvelrni |
|
29 |
26 28
|
syl |
|
30 |
29
|
recnd |
|
31 |
22 23
|
rpdivcld |
|
32 |
27
|
ffvelrni |
|
33 |
31 32
|
syl |
|
34 |
33
|
recnd |
|
35 |
30 34
|
subcld |
|
36 |
35
|
abscld |
|
37 |
11 36
|
remulcld |
|
38 |
8 37
|
fsumrecl |
|
39 |
13 19
|
rplogcld |
|
40 |
21 39
|
rpmulcld |
|
41 |
38 40
|
rerpdivcld |
|
42 |
|
ioossre |
|
43 |
3
|
rpcnd |
|
44 |
|
o1const |
|
45 |
42 43 44
|
sylancr |
|
46 |
|
chpo1ubb |
|
47 |
|
simpl |
|
48 |
|
simpr |
|
49 |
1 2 47 48
|
pntrlog2bndlem2 |
|
50 |
49
|
rexlimiva |
|
51 |
46 50
|
mp1i |
|
52 |
7 41 45 51
|
o1mul2 |
|
53 |
7 41
|
remulcld |
|
54 |
34
|
abscld |
|
55 |
30
|
abscld |
|
56 |
54 55
|
resubcld |
|
57 |
1
|
pntsf |
|
58 |
57
|
ffvelrni |
|
59 |
11 58
|
syl |
|
60 |
|
2re |
|
61 |
60
|
a1i |
|
62 |
23
|
relogcld |
|
63 |
11 62
|
remulcld |
|
64 |
61 63
|
remulcld |
|
65 |
59 64
|
resubcld |
|
66 |
56 65
|
remulcld |
|
67 |
8 66
|
fsumrecl |
|
68 |
67 40
|
rerpdivcld |
|
69 |
68
|
recnd |
|
70 |
69
|
abscld |
|
71 |
53
|
recnd |
|
72 |
71
|
abscld |
|
73 |
67
|
recnd |
|
74 |
73
|
abscld |
|
75 |
7 38
|
remulcld |
|
76 |
66
|
recnd |
|
77 |
76
|
abscld |
|
78 |
8 77
|
fsumrecl |
|
79 |
8 76
|
fsumabs |
|
80 |
7
|
adantr |
|
81 |
80 37
|
remulcld |
|
82 |
56
|
recnd |
|
83 |
82
|
abscld |
|
84 |
65
|
recnd |
|
85 |
84
|
abscld |
|
86 |
80 11
|
remulcld |
|
87 |
82
|
absge0d |
|
88 |
84
|
absge0d |
|
89 |
34 30
|
abs2difabsd |
|
90 |
34 30
|
abssubd |
|
91 |
89 90
|
breqtrd |
|
92 |
59
|
recnd |
|
93 |
11
|
recnd |
|
94 |
10
|
nnne0d |
|
95 |
92 93 94
|
divcld |
|
96 |
|
2cnd |
|
97 |
62
|
recnd |
|
98 |
96 97
|
mulcld |
|
99 |
95 98
|
subcld |
|
100 |
99 93
|
absmuld |
|
101 |
95 98 93
|
subdird |
|
102 |
92 93 94
|
divcan1d |
|
103 |
96 93 97
|
mul32d |
|
104 |
96 93 97
|
mulassd |
|
105 |
103 104
|
eqtr3d |
|
106 |
102 105
|
oveq12d |
|
107 |
101 106
|
eqtrd |
|
108 |
107
|
fveq2d |
|
109 |
23
|
rpge0d |
|
110 |
11 109
|
absidd |
|
111 |
110
|
oveq2d |
|
112 |
100 108 111
|
3eqtr3d |
|
113 |
99
|
abscld |
|
114 |
|
fveq2 |
|
115 |
|
id |
|
116 |
114 115
|
oveq12d |
|
117 |
|
fveq2 |
|
118 |
117
|
oveq2d |
|
119 |
116 118
|
oveq12d |
|
120 |
119
|
fveq2d |
|
121 |
120
|
breq1d |
|
122 |
4
|
ad2antrr |
|
123 |
10
|
nnge1d |
|
124 |
|
1re |
|
125 |
|
elicopnf |
|
126 |
124 125
|
ax-mp |
|
127 |
11 123 126
|
sylanbrc |
|
128 |
121 122 127
|
rspcdva |
|
129 |
113 80 11 109 128
|
lemul1ad |
|
130 |
112 129
|
eqbrtrd |
|
131 |
83 36 85 86 87 88 91 130
|
lemul12ad |
|
132 |
82 84
|
absmuld |
|
133 |
43
|
ad2antrr |
|
134 |
36
|
recnd |
|
135 |
133 93 134
|
mulassd |
|
136 |
133 93
|
mulcld |
|
137 |
136 134
|
mulcomd |
|
138 |
135 137
|
eqtr3d |
|
139 |
131 132 138
|
3brtr4d |
|
140 |
8 77 81 139
|
fsumle |
|
141 |
43
|
adantr |
|
142 |
37
|
recnd |
|
143 |
8 141 142
|
fsummulc2 |
|
144 |
140 143
|
breqtrrd |
|
145 |
74 78 75 79 144
|
letrd |
|
146 |
74 75 40 145
|
lediv1dd |
|
147 |
40
|
rpcnd |
|
148 |
40
|
rpne0d |
|
149 |
73 147 148
|
absdivd |
|
150 |
40
|
rpred |
|
151 |
40
|
rpge0d |
|
152 |
150 151
|
absidd |
|
153 |
152
|
oveq2d |
|
154 |
149 153
|
eqtr2d |
|
155 |
38
|
recnd |
|
156 |
141 155 147 148
|
divassd |
|
157 |
146 154 156
|
3brtr3d |
|
158 |
53
|
leabsd |
|
159 |
70 53 72 157 158
|
letrd |
|
160 |
159
|
adantrr |
|
161 |
5 52 53 69 160
|
o1le |
|