Metamath Proof Explorer


Theorem pntrlog2bndlem3

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S = a i = 1 a Λ i log i + ψ a i
pntrlog2bnd.r R = a + ψ a a
pntrlog2bndlem3.1 φ A +
pntrlog2bndlem3.2 φ y 1 +∞ S y y 2 log y A
Assertion pntrlog2bndlem3 φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 pntrlog2bnd.r R = a + ψ a a
3 pntrlog2bndlem3.1 φ A +
4 pntrlog2bndlem3.2 φ y 1 +∞ S y y 2 log y A
5 1red φ 1
6 3 rpred φ A
7 6 adantr φ x 1 +∞ A
8 fzfid φ x 1 +∞ 1 x Fin
9 elfznn n 1 x n
10 9 adantl φ x 1 +∞ n 1 x n
11 10 nnred φ x 1 +∞ n 1 x n
12 elioore x 1 +∞ x
13 12 adantl φ x 1 +∞ x
14 1rp 1 +
15 14 a1i φ x 1 +∞ 1 +
16 1red φ x 1 +∞ 1
17 eliooord x 1 +∞ 1 < x x < +∞
18 17 adantl φ x 1 +∞ 1 < x x < +∞
19 18 simpld φ x 1 +∞ 1 < x
20 16 13 19 ltled φ x 1 +∞ 1 x
21 13 15 20 rpgecld φ x 1 +∞ x +
22 21 adantr φ x 1 +∞ n 1 x x +
23 10 nnrpd φ x 1 +∞ n 1 x n +
24 14 a1i φ x 1 +∞ n 1 x 1 +
25 23 24 rpaddcld φ x 1 +∞ n 1 x n + 1 +
26 22 25 rpdivcld φ x 1 +∞ n 1 x x n + 1 +
27 2 pntrf R : +
28 27 ffvelrni x n + 1 + R x n + 1
29 26 28 syl φ x 1 +∞ n 1 x R x n + 1
30 29 recnd φ x 1 +∞ n 1 x R x n + 1
31 22 23 rpdivcld φ x 1 +∞ n 1 x x n +
32 27 ffvelrni x n + R x n
33 31 32 syl φ x 1 +∞ n 1 x R x n
34 33 recnd φ x 1 +∞ n 1 x R x n
35 30 34 subcld φ x 1 +∞ n 1 x R x n + 1 R x n
36 35 abscld φ x 1 +∞ n 1 x R x n + 1 R x n
37 11 36 remulcld φ x 1 +∞ n 1 x n R x n + 1 R x n
38 8 37 fsumrecl φ x 1 +∞ n = 1 x n R x n + 1 R x n
39 13 19 rplogcld φ x 1 +∞ log x +
40 21 39 rpmulcld φ x 1 +∞ x log x +
41 38 40 rerpdivcld φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x
42 ioossre 1 +∞
43 3 rpcnd φ A
44 o1const 1 +∞ A x 1 +∞ A 𝑂1
45 42 43 44 sylancr φ x 1 +∞ A 𝑂1
46 chpo1ubb c + y + ψ y c y
47 simpl c + y + ψ y c y c +
48 simpr c + y + ψ y c y y + ψ y c y
49 1 2 47 48 pntrlog2bndlem2 c + y + ψ y c y x 1 +∞ n = 1 x n R x n + 1 R x n x log x 𝑂1
50 49 rexlimiva c + y + ψ y c y x 1 +∞ n = 1 x n R x n + 1 R x n x log x 𝑂1
51 46 50 mp1i φ x 1 +∞ n = 1 x n R x n + 1 R x n x log x 𝑂1
52 7 41 45 51 o1mul2 φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x 𝑂1
53 7 41 remulcld φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x
54 34 abscld φ x 1 +∞ n 1 x R x n
55 30 abscld φ x 1 +∞ n 1 x R x n + 1
56 54 55 resubcld φ x 1 +∞ n 1 x R x n R x n + 1
57 1 pntsf S :
58 57 ffvelrni n S n
59 11 58 syl φ x 1 +∞ n 1 x S n
60 2re 2
61 60 a1i φ x 1 +∞ n 1 x 2
62 23 relogcld φ x 1 +∞ n 1 x log n
63 11 62 remulcld φ x 1 +∞ n 1 x n log n
64 61 63 remulcld φ x 1 +∞ n 1 x 2 n log n
65 59 64 resubcld φ x 1 +∞ n 1 x S n 2 n log n
66 56 65 remulcld φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n
67 8 66 fsumrecl φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n
68 67 40 rerpdivcld φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x
69 68 recnd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x
70 69 abscld φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x
71 53 recnd φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x
72 71 abscld φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x
73 67 recnd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n
74 73 abscld φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n
75 7 38 remulcld φ x 1 +∞ A n = 1 x n R x n + 1 R x n
76 66 recnd φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n
77 76 abscld φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n
78 8 77 fsumrecl φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n
79 8 76 fsumabs φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n n = 1 x R x n R x n + 1 S n 2 n log n
80 7 adantr φ x 1 +∞ n 1 x A
81 80 37 remulcld φ x 1 +∞ n 1 x A n R x n + 1 R x n
82 56 recnd φ x 1 +∞ n 1 x R x n R x n + 1
83 82 abscld φ x 1 +∞ n 1 x R x n R x n + 1
84 65 recnd φ x 1 +∞ n 1 x S n 2 n log n
85 84 abscld φ x 1 +∞ n 1 x S n 2 n log n
86 80 11 remulcld φ x 1 +∞ n 1 x A n
87 82 absge0d φ x 1 +∞ n 1 x 0 R x n R x n + 1
88 84 absge0d φ x 1 +∞ n 1 x 0 S n 2 n log n
89 34 30 abs2difabsd φ x 1 +∞ n 1 x R x n R x n + 1 R x n R x n + 1
90 34 30 abssubd φ x 1 +∞ n 1 x R x n R x n + 1 = R x n + 1 R x n
91 89 90 breqtrd φ x 1 +∞ n 1 x R x n R x n + 1 R x n + 1 R x n
92 59 recnd φ x 1 +∞ n 1 x S n
93 11 recnd φ x 1 +∞ n 1 x n
94 10 nnne0d φ x 1 +∞ n 1 x n 0
95 92 93 94 divcld φ x 1 +∞ n 1 x S n n
96 2cnd φ x 1 +∞ n 1 x 2
97 62 recnd φ x 1 +∞ n 1 x log n
98 96 97 mulcld φ x 1 +∞ n 1 x 2 log n
99 95 98 subcld φ x 1 +∞ n 1 x S n n 2 log n
100 99 93 absmuld φ x 1 +∞ n 1 x S n n 2 log n n = S n n 2 log n n
101 95 98 93 subdird φ x 1 +∞ n 1 x S n n 2 log n n = S n n n 2 log n n
102 92 93 94 divcan1d φ x 1 +∞ n 1 x S n n n = S n
103 96 93 97 mul32d φ x 1 +∞ n 1 x 2 n log n = 2 log n n
104 96 93 97 mulassd φ x 1 +∞ n 1 x 2 n log n = 2 n log n
105 103 104 eqtr3d φ x 1 +∞ n 1 x 2 log n n = 2 n log n
106 102 105 oveq12d φ x 1 +∞ n 1 x S n n n 2 log n n = S n 2 n log n
107 101 106 eqtrd φ x 1 +∞ n 1 x S n n 2 log n n = S n 2 n log n
108 107 fveq2d φ x 1 +∞ n 1 x S n n 2 log n n = S n 2 n log n
109 23 rpge0d φ x 1 +∞ n 1 x 0 n
110 11 109 absidd φ x 1 +∞ n 1 x n = n
111 110 oveq2d φ x 1 +∞ n 1 x S n n 2 log n n = S n n 2 log n n
112 100 108 111 3eqtr3d φ x 1 +∞ n 1 x S n 2 n log n = S n n 2 log n n
113 99 abscld φ x 1 +∞ n 1 x S n n 2 log n
114 fveq2 y = n S y = S n
115 id y = n y = n
116 114 115 oveq12d y = n S y y = S n n
117 fveq2 y = n log y = log n
118 117 oveq2d y = n 2 log y = 2 log n
119 116 118 oveq12d y = n S y y 2 log y = S n n 2 log n
120 119 fveq2d y = n S y y 2 log y = S n n 2 log n
121 120 breq1d y = n S y y 2 log y A S n n 2 log n A
122 4 ad2antrr φ x 1 +∞ n 1 x y 1 +∞ S y y 2 log y A
123 10 nnge1d φ x 1 +∞ n 1 x 1 n
124 1re 1
125 elicopnf 1 n 1 +∞ n 1 n
126 124 125 ax-mp n 1 +∞ n 1 n
127 11 123 126 sylanbrc φ x 1 +∞ n 1 x n 1 +∞
128 121 122 127 rspcdva φ x 1 +∞ n 1 x S n n 2 log n A
129 113 80 11 109 128 lemul1ad φ x 1 +∞ n 1 x S n n 2 log n n A n
130 112 129 eqbrtrd φ x 1 +∞ n 1 x S n 2 n log n A n
131 83 36 85 86 87 88 91 130 lemul12ad φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n R x n + 1 R x n A n
132 82 84 absmuld φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n = R x n R x n + 1 S n 2 n log n
133 43 ad2antrr φ x 1 +∞ n 1 x A
134 36 recnd φ x 1 +∞ n 1 x R x n + 1 R x n
135 133 93 134 mulassd φ x 1 +∞ n 1 x A n R x n + 1 R x n = A n R x n + 1 R x n
136 133 93 mulcld φ x 1 +∞ n 1 x A n
137 136 134 mulcomd φ x 1 +∞ n 1 x A n R x n + 1 R x n = R x n + 1 R x n A n
138 135 137 eqtr3d φ x 1 +∞ n 1 x A n R x n + 1 R x n = R x n + 1 R x n A n
139 131 132 138 3brtr4d φ x 1 +∞ n 1 x R x n R x n + 1 S n 2 n log n A n R x n + 1 R x n
140 8 77 81 139 fsumle φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n n = 1 x A n R x n + 1 R x n
141 43 adantr φ x 1 +∞ A
142 37 recnd φ x 1 +∞ n 1 x n R x n + 1 R x n
143 8 141 142 fsummulc2 φ x 1 +∞ A n = 1 x n R x n + 1 R x n = n = 1 x A n R x n + 1 R x n
144 140 143 breqtrrd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n A n = 1 x n R x n + 1 R x n
145 74 78 75 79 144 letrd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n A n = 1 x n R x n + 1 R x n
146 74 75 40 145 lediv1dd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x A n = 1 x n R x n + 1 R x n x log x
147 40 rpcnd φ x 1 +∞ x log x
148 40 rpne0d φ x 1 +∞ x log x 0
149 73 147 148 absdivd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x = n = 1 x R x n R x n + 1 S n 2 n log n x log x
150 40 rpred φ x 1 +∞ x log x
151 40 rpge0d φ x 1 +∞ 0 x log x
152 150 151 absidd φ x 1 +∞ x log x = x log x
153 152 oveq2d φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x = n = 1 x R x n R x n + 1 S n 2 n log n x log x
154 149 153 eqtr2d φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x = n = 1 x R x n R x n + 1 S n 2 n log n x log x
155 38 recnd φ x 1 +∞ n = 1 x n R x n + 1 R x n
156 141 155 147 148 divassd φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x = A n = 1 x n R x n + 1 R x n x log x
157 146 154 156 3brtr3d φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x A n = 1 x n R x n + 1 R x n x log x
158 53 leabsd φ x 1 +∞ A n = 1 x n R x n + 1 R x n x log x A n = 1 x n R x n + 1 R x n x log x
159 70 53 72 157 158 letrd φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x A n = 1 x n R x n + 1 R x n x log x
160 159 adantrr φ x 1 +∞ 1 x n = 1 x R x n R x n + 1 S n 2 n log n x log x A n = 1 x n R x n + 1 R x n x log x
161 5 52 53 69 160 o1le φ x 1 +∞ n = 1 x R x n R x n + 1 S n 2 n log n x log x 𝑂1