Metamath Proof Explorer


Theorem pntrlog2bndlem5

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S = a i = 1 a Λ i log i + ψ a i
pntrlog2bnd.r R = a + ψ a a
pntrlog2bnd.t T = a if a + a log a 0
pntrlog2bndlem5.1 φ B +
pntrlog2bndlem5.2 φ y + R y y B
Assertion pntrlog2bndlem5 φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 pntrlog2bnd.r R = a + ψ a a
3 pntrlog2bnd.t T = a if a + a log a 0
4 pntrlog2bndlem5.1 φ B +
5 pntrlog2bndlem5.2 φ y + R y y B
6 elioore x 1 +∞ x
7 6 adantl φ x 1 +∞ x
8 1rp 1 +
9 8 a1i φ x 1 +∞ 1 +
10 1red φ x 1 +∞ 1
11 eliooord x 1 +∞ 1 < x x < +∞
12 11 adantl φ x 1 +∞ 1 < x x < +∞
13 12 simpld φ x 1 +∞ 1 < x
14 10 7 13 ltled φ x 1 +∞ 1 x
15 7 9 14 rpgecld φ x 1 +∞ x +
16 2 pntrf R : +
17 16 ffvelrni x + R x
18 15 17 syl φ x 1 +∞ R x
19 18 recnd φ x 1 +∞ R x
20 19 abscld φ x 1 +∞ R x
21 20 recnd φ x 1 +∞ R x
22 15 relogcld φ x 1 +∞ log x
23 22 recnd φ x 1 +∞ log x
24 21 23 mulcld φ x 1 +∞ R x log x
25 2cnd φ x 1 +∞ 2
26 7 13 rplogcld φ x 1 +∞ log x +
27 26 rpne0d φ x 1 +∞ log x 0
28 25 23 27 divcld φ x 1 +∞ 2 log x
29 fzfid φ x 1 +∞ 1 x Fin
30 15 adantr φ x 1 +∞ n 1 x x +
31 elfznn n 1 x n
32 31 adantl φ x 1 +∞ n 1 x n
33 32 nnrpd φ x 1 +∞ n 1 x n +
34 30 33 rpdivcld φ x 1 +∞ n 1 x x n +
35 16 ffvelrni x n + R x n
36 34 35 syl φ x 1 +∞ n 1 x R x n
37 36 recnd φ x 1 +∞ n 1 x R x n
38 37 abscld φ x 1 +∞ n 1 x R x n
39 33 relogcld φ x 1 +∞ n 1 x log n
40 1red φ x 1 +∞ n 1 x 1
41 39 40 readdcld φ x 1 +∞ n 1 x log n + 1
42 38 41 remulcld φ x 1 +∞ n 1 x R x n log n + 1
43 42 recnd φ x 1 +∞ n 1 x R x n log n + 1
44 29 43 fsumcl φ x 1 +∞ n = 1 x R x n log n + 1
45 28 44 mulcld φ x 1 +∞ 2 log x n = 1 x R x n log n + 1
46 24 45 subcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1
47 38 recnd φ x 1 +∞ n 1 x R x n
48 29 47 fsumcl φ x 1 +∞ n = 1 x R x n
49 28 48 mulcld φ x 1 +∞ 2 log x n = 1 x R x n
50 7 recnd φ x 1 +∞ x
51 15 rpne0d φ x 1 +∞ x 0
52 46 49 50 51 divdird φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 1 + 2 log x n = 1 x R x n x = R x log x 2 log x n = 1 x R x n log n + 1 x + 2 log x n = 1 x R x n x
53 20 22 remulcld φ x 1 +∞ R x log x
54 53 recnd φ x 1 +∞ R x log x
55 54 45 49 subsubd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 2 log x n = 1 x R x n = R x log x - 2 log x n = 1 x R x n log n + 1 + 2 log x n = 1 x R x n
56 28 44 48 subdid φ x 1 +∞ 2 log x n = 1 x R x n log n + 1 n = 1 x R x n = 2 log x n = 1 x R x n log n + 1 2 log x n = 1 x R x n
57 29 43 47 fsumsub φ x 1 +∞ n = 1 x R x n log n + 1 R x n = n = 1 x R x n log n + 1 n = 1 x R x n
58 41 recnd φ x 1 +∞ n 1 x log n + 1
59 1cnd φ x 1 +∞ n 1 x 1
60 47 58 59 subdid φ x 1 +∞ n 1 x R x n log n + 1 - 1 = R x n log n + 1 R x n 1
61 39 recnd φ x 1 +∞ n 1 x log n
62 61 59 pncand φ x 1 +∞ n 1 x log n + 1 - 1 = log n
63 62 oveq2d φ x 1 +∞ n 1 x R x n log n + 1 - 1 = R x n log n
64 47 mulid1d φ x 1 +∞ n 1 x R x n 1 = R x n
65 64 oveq2d φ x 1 +∞ n 1 x R x n log n + 1 R x n 1 = R x n log n + 1 R x n
66 60 63 65 3eqtr3rd φ x 1 +∞ n 1 x R x n log n + 1 R x n = R x n log n
67 66 sumeq2dv φ x 1 +∞ n = 1 x R x n log n + 1 R x n = n = 1 x R x n log n
68 57 67 eqtr3d φ x 1 +∞ n = 1 x R x n log n + 1 n = 1 x R x n = n = 1 x R x n log n
69 68 oveq2d φ x 1 +∞ 2 log x n = 1 x R x n log n + 1 n = 1 x R x n = 2 log x n = 1 x R x n log n
70 56 69 eqtr3d φ x 1 +∞ 2 log x n = 1 x R x n log n + 1 2 log x n = 1 x R x n = 2 log x n = 1 x R x n log n
71 70 oveq2d φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 2 log x n = 1 x R x n = R x log x 2 log x n = 1 x R x n log n
72 55 71 eqtr3d φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 1 + 2 log x n = 1 x R x n = R x log x 2 log x n = 1 x R x n log n
73 72 oveq1d φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 1 + 2 log x n = 1 x R x n x = R x log x 2 log x n = 1 x R x n log n x
74 52 73 eqtr3d φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x + 2 log x n = 1 x R x n x = R x log x 2 log x n = 1 x R x n log n x
75 74 mpteq2dva φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x + 2 log x n = 1 x R x n x = x 1 +∞ R x log x 2 log x n = 1 x R x n log n x
76 2re 2
77 76 a1i φ x 1 +∞ 2
78 77 26 rerpdivcld φ x 1 +∞ 2 log x
79 29 42 fsumrecl φ x 1 +∞ n = 1 x R x n log n + 1
80 78 79 remulcld φ x 1 +∞ 2 log x n = 1 x R x n log n + 1
81 53 80 resubcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1
82 81 15 rerpdivcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x
83 29 38 fsumrecl φ x 1 +∞ n = 1 x R x n
84 78 83 remulcld φ x 1 +∞ 2 log x n = 1 x R x n
85 84 15 rerpdivcld φ x 1 +∞ 2 log x n = 1 x R x n x
86 1red φ 1
87 1 2 3 pntrlog2bndlem4 x 1 +∞ R x log x 2 log x n = 1 x R x n T n T n 1 x 𝑂1
88 87 a1i φ x 1 +∞ R x log x 2 log x n = 1 x R x n T n T n 1 x 𝑂1
89 32 nnred φ x 1 +∞ n 1 x n
90 simpl a a + a
91 simpr a a + a +
92 91 relogcld a a + log a
93 90 92 remulcld a a + a log a
94 0red a ¬ a + 0
95 93 94 ifclda a if a + a log a 0
96 3 95 fmpti T :
97 96 ffvelrni n T n
98 89 97 syl φ x 1 +∞ n 1 x T n
99 89 40 resubcld φ x 1 +∞ n 1 x n 1
100 96 ffvelrni n 1 T n 1
101 99 100 syl φ x 1 +∞ n 1 x T n 1
102 98 101 resubcld φ x 1 +∞ n 1 x T n T n 1
103 38 102 remulcld φ x 1 +∞ n 1 x R x n T n T n 1
104 29 103 fsumrecl φ x 1 +∞ n = 1 x R x n T n T n 1
105 78 104 remulcld φ x 1 +∞ 2 log x n = 1 x R x n T n T n 1
106 53 105 resubcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n T n T n 1
107 106 15 rerpdivcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n T n T n 1 x
108 2rp 2 +
109 108 a1i φ x 1 +∞ 2 +
110 109 rpge0d φ x 1 +∞ 0 2
111 77 26 110 divge0d φ x 1 +∞ 0 2 log x
112 37 absge0d φ x 1 +∞ n 1 x 0 R x n
113 33 adantr φ x 1 +∞ n 1 x 1 < n n +
114 113 rpcnd φ x 1 +∞ n 1 x 1 < n n
115 61 adantr φ x 1 +∞ n 1 x 1 < n log n
116 114 115 mulcld φ x 1 +∞ n 1 x 1 < n n log n
117 simpr φ x 1 +∞ n 1 x 1 < n 1 < n
118 1re 1
119 113 rpred φ x 1 +∞ n 1 x 1 < n n
120 difrp 1 n 1 < n n 1 +
121 118 119 120 sylancr φ x 1 +∞ n 1 x 1 < n 1 < n n 1 +
122 117 121 mpbid φ x 1 +∞ n 1 x 1 < n n 1 +
123 122 relogcld φ x 1 +∞ n 1 x 1 < n log n 1
124 123 recnd φ x 1 +∞ n 1 x 1 < n log n 1
125 114 124 mulcld φ x 1 +∞ n 1 x 1 < n n log n 1
126 116 125 124 subsubd φ x 1 +∞ n 1 x 1 < n n log n n log n 1 log n 1 = n log n - n log n 1 + log n 1
127 rpre n + n
128 eleq1 a = n a + n +
129 id a = n a = n
130 fveq2 a = n log a = log n
131 129 130 oveq12d a = n a log a = n log n
132 128 131 ifbieq1d a = n if a + a log a 0 = if n + n log n 0
133 ovex n log n V
134 c0ex 0 V
135 133 134 ifex if n + n log n 0 V
136 132 3 135 fvmpt n T n = if n + n log n 0
137 127 136 syl n + T n = if n + n log n 0
138 iftrue n + if n + n log n 0 = n log n
139 137 138 eqtrd n + T n = n log n
140 113 139 syl φ x 1 +∞ n 1 x 1 < n T n = n log n
141 rpre n 1 + n 1
142 eleq1 a = n 1 a + n 1 +
143 id a = n 1 a = n 1
144 fveq2 a = n 1 log a = log n 1
145 143 144 oveq12d a = n 1 a log a = n 1 log n 1
146 142 145 ifbieq1d a = n 1 if a + a log a 0 = if n 1 + n 1 log n 1 0
147 ovex n 1 log n 1 V
148 147 134 ifex if n 1 + n 1 log n 1 0 V
149 146 3 148 fvmpt n 1 T n 1 = if n 1 + n 1 log n 1 0
150 141 149 syl n 1 + T n 1 = if n 1 + n 1 log n 1 0
151 iftrue n 1 + if n 1 + n 1 log n 1 0 = n 1 log n 1
152 150 151 eqtrd n 1 + T n 1 = n 1 log n 1
153 122 152 syl φ x 1 +∞ n 1 x 1 < n T n 1 = n 1 log n 1
154 1cnd φ x 1 +∞ n 1 x 1 < n 1
155 114 154 124 subdird φ x 1 +∞ n 1 x 1 < n n 1 log n 1 = n log n 1 1 log n 1
156 124 mulid2d φ x 1 +∞ n 1 x 1 < n 1 log n 1 = log n 1
157 156 oveq2d φ x 1 +∞ n 1 x 1 < n n log n 1 1 log n 1 = n log n 1 log n 1
158 153 155 157 3eqtrd φ x 1 +∞ n 1 x 1 < n T n 1 = n log n 1 log n 1
159 140 158 oveq12d φ x 1 +∞ n 1 x 1 < n T n T n 1 = n log n n log n 1 log n 1
160 114 115 124 subdid φ x 1 +∞ n 1 x 1 < n n log n log n 1 = n log n n log n 1
161 160 oveq1d φ x 1 +∞ n 1 x 1 < n n log n log n 1 + log n 1 = n log n - n log n 1 + log n 1
162 126 159 161 3eqtr4d φ x 1 +∞ n 1 x 1 < n T n T n 1 = n log n log n 1 + log n 1
163 113 relogcld φ x 1 +∞ n 1 x 1 < n log n
164 163 123 resubcld φ x 1 +∞ n 1 x 1 < n log n log n 1
165 164 recnd φ x 1 +∞ n 1 x 1 < n log n log n 1
166 114 154 165 subdird φ x 1 +∞ n 1 x 1 < n n 1 log n log n 1 = n log n log n 1 1 log n log n 1
167 165 mulid2d φ x 1 +∞ n 1 x 1 < n 1 log n log n 1 = log n log n 1
168 167 oveq2d φ x 1 +∞ n 1 x 1 < n n log n log n 1 1 log n log n 1 = n log n log n 1 log n log n 1
169 119 164 remulcld φ x 1 +∞ n 1 x 1 < n n log n log n 1
170 169 recnd φ x 1 +∞ n 1 x 1 < n n log n log n 1
171 170 115 124 subsub3d φ x 1 +∞ n 1 x 1 < n n log n log n 1 log n log n 1 = n log n log n 1 + log n 1 - log n
172 166 168 171 3eqtrd φ x 1 +∞ n 1 x 1 < n n 1 log n log n 1 = n log n log n 1 + log n 1 - log n
173 114 154 npcand φ x 1 +∞ n 1 x 1 < n n - 1 + 1 = n
174 173 fveq2d φ x 1 +∞ n 1 x 1 < n log n - 1 + 1 = log n
175 174 oveq1d φ x 1 +∞ n 1 x 1 < n log n - 1 + 1 log n 1 = log n log n 1
176 logdifbnd n 1 + log n - 1 + 1 log n 1 1 n 1
177 122 176 syl φ x 1 +∞ n 1 x 1 < n log n - 1 + 1 log n 1 1 n 1
178 175 177 eqbrtrrd φ x 1 +∞ n 1 x 1 < n log n log n 1 1 n 1
179 1red φ x 1 +∞ n 1 x 1 < n 1
180 164 179 122 lemuldiv2d φ x 1 +∞ n 1 x 1 < n n 1 log n log n 1 1 log n log n 1 1 n 1
181 178 180 mpbird φ x 1 +∞ n 1 x 1 < n n 1 log n log n 1 1
182 172 181 eqbrtrrd φ x 1 +∞ n 1 x 1 < n n log n log n 1 + log n 1 - log n 1
183 169 123 readdcld φ x 1 +∞ n 1 x 1 < n n log n log n 1 + log n 1
184 183 163 179 lesubadd2d φ x 1 +∞ n 1 x 1 < n n log n log n 1 + log n 1 - log n 1 n log n log n 1 + log n 1 log n + 1
185 182 184 mpbid φ x 1 +∞ n 1 x 1 < n n log n log n 1 + log n 1 log n + 1
186 162 185 eqbrtrd φ x 1 +∞ n 1 x 1 < n T n T n 1 log n + 1
187 fveq2 n = 1 T n = T 1
188 id a = 1 a = 1
189 188 8 eqeltrdi a = 1 a +
190 189 iftrued a = 1 if a + a log a 0 = a log a
191 fveq2 a = 1 log a = log 1
192 log1 log 1 = 0
193 191 192 eqtrdi a = 1 log a = 0
194 188 193 oveq12d a = 1 a log a = 1 0
195 ax-1cn 1
196 195 mul01i 1 0 = 0
197 194 196 eqtrdi a = 1 a log a = 0
198 190 197 eqtrd a = 1 if a + a log a 0 = 0
199 198 3 134 fvmpt 1 T 1 = 0
200 118 199 ax-mp T 1 = 0
201 187 200 eqtrdi n = 1 T n = 0
202 oveq1 n = 1 n 1 = 1 1
203 1m1e0 1 1 = 0
204 202 203 eqtrdi n = 1 n 1 = 0
205 204 fveq2d n = 1 T n 1 = T 0
206 0re 0
207 rpne0 a + a 0
208 207 necon2bi a = 0 ¬ a +
209 208 iffalsed a = 0 if a + a log a 0 = 0
210 209 3 134 fvmpt 0 T 0 = 0
211 206 210 ax-mp T 0 = 0
212 205 211 eqtrdi n = 1 T n 1 = 0
213 201 212 oveq12d n = 1 T n T n 1 = 0 0
214 0m0e0 0 0 = 0
215 213 214 eqtrdi n = 1 T n T n 1 = 0
216 215 eqcoms 1 = n T n T n 1 = 0
217 216 adantl φ x 1 +∞ n 1 x 1 = n T n T n 1 = 0
218 0red φ x 1 +∞ n 1 x 0
219 32 nnge1d φ x 1 +∞ n 1 x 1 n
220 89 219 logge0d φ x 1 +∞ n 1 x 0 log n
221 39 lep1d φ x 1 +∞ n 1 x log n log n + 1
222 218 39 41 220 221 letrd φ x 1 +∞ n 1 x 0 log n + 1
223 222 adantr φ x 1 +∞ n 1 x 1 = n 0 log n + 1
224 217 223 eqbrtrd φ x 1 +∞ n 1 x 1 = n T n T n 1 log n + 1
225 elfzle1 n 1 x 1 n
226 225 adantl φ x 1 +∞ n 1 x 1 n
227 40 89 leloed φ x 1 +∞ n 1 x 1 n 1 < n 1 = n
228 226 227 mpbid φ x 1 +∞ n 1 x 1 < n 1 = n
229 186 224 228 mpjaodan φ x 1 +∞ n 1 x T n T n 1 log n + 1
230 102 41 38 112 229 lemul2ad φ x 1 +∞ n 1 x R x n T n T n 1 R x n log n + 1
231 29 103 42 230 fsumle φ x 1 +∞ n = 1 x R x n T n T n 1 n = 1 x R x n log n + 1
232 104 79 78 111 231 lemul2ad φ x 1 +∞ 2 log x n = 1 x R x n T n T n 1 2 log x n = 1 x R x n log n + 1
233 105 80 53 232 lesub2dd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 R x log x 2 log x n = 1 x R x n T n T n 1
234 81 106 15 233 lediv1dd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x R x log x 2 log x n = 1 x R x n T n T n 1 x
235 234 adantrr φ x 1 +∞ 1 x R x log x 2 log x n = 1 x R x n log n + 1 x R x log x 2 log x n = 1 x R x n T n T n 1 x
236 86 88 107 82 235 lo1le φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x 𝑂1
237 108 a1i φ 2 +
238 237 4 rpmulcld φ 2 B +
239 238 rpred φ 2 B
240 239 adantr φ x 1 +∞ 2 B
241 10 26 rerpdivcld φ x 1 +∞ 1 log x
242 10 241 readdcld φ x 1 +∞ 1 + 1 log x
243 ioossre 1 +∞
244 lo1const 1 +∞ 2 B x 1 +∞ 2 B 𝑂1
245 243 239 244 sylancr φ x 1 +∞ 2 B 𝑂1
246 lo1const 1 +∞ 1 x 1 +∞ 1 𝑂1
247 243 86 246 sylancr φ x 1 +∞ 1 𝑂1
248 divlogrlim x 1 +∞ 1 log x 0
249 rlimo1 x 1 +∞ 1 log x 0 x 1 +∞ 1 log x 𝑂1
250 248 249 mp1i φ x 1 +∞ 1 log x 𝑂1
251 241 250 o1lo1d φ x 1 +∞ 1 log x 𝑂1
252 10 241 247 251 lo1add φ x 1 +∞ 1 + 1 log x 𝑂1
253 238 adantr φ x 1 +∞ 2 B +
254 253 rpge0d φ x 1 +∞ 0 2 B
255 240 242 245 252 254 lo1mul φ x 1 +∞ 2 B 1 + 1 log x 𝑂1
256 240 242 remulcld φ x 1 +∞ 2 B 1 + 1 log x
257 83 15 rerpdivcld φ x 1 +∞ n = 1 x R x n x
258 22 10 readdcld φ x 1 +∞ log x + 1
259 4 adantr φ x 1 +∞ B +
260 259 rpred φ x 1 +∞ B
261 258 260 remulcld φ x 1 +∞ log x + 1 B
262 32 nnrecred φ x 1 +∞ n 1 x 1 n
263 29 262 fsumrecl φ x 1 +∞ n = 1 x 1 n
264 263 260 remulcld φ x 1 +∞ n = 1 x 1 n B
265 38 30 rerpdivcld φ x 1 +∞ n 1 x R x n x
266 260 adantr φ x 1 +∞ n 1 x B
267 262 266 remulcld φ x 1 +∞ n 1 x 1 n B
268 34 rpcnd φ x 1 +∞ n 1 x x n
269 34 rpne0d φ x 1 +∞ n 1 x x n 0
270 37 268 269 absdivd φ x 1 +∞ n 1 x R x n x n = R x n x n
271 7 adantr φ x 1 +∞ n 1 x x
272 271 32 nndivred φ x 1 +∞ n 1 x x n
273 34 rpge0d φ x 1 +∞ n 1 x 0 x n
274 272 273 absidd φ x 1 +∞ n 1 x x n = x n
275 274 oveq2d φ x 1 +∞ n 1 x R x n x n = R x n x n
276 270 275 eqtrd φ x 1 +∞ n 1 x R x n x n = R x n x n
277 50 adantr φ x 1 +∞ n 1 x x
278 89 recnd φ x 1 +∞ n 1 x n
279 51 adantr φ x 1 +∞ n 1 x x 0
280 32 nnne0d φ x 1 +∞ n 1 x n 0
281 47 277 278 279 280 divdiv2d φ x 1 +∞ n 1 x R x n x n = R x n n x
282 47 278 277 279 div23d φ x 1 +∞ n 1 x R x n n x = R x n x n
283 276 281 282 3eqtrd φ x 1 +∞ n 1 x R x n x n = R x n x n
284 fveq2 y = x n R y = R x n
285 id y = x n y = x n
286 284 285 oveq12d y = x n R y y = R x n x n
287 286 fveq2d y = x n R y y = R x n x n
288 287 breq1d y = x n R y y B R x n x n B
289 5 ad2antrr φ x 1 +∞ n 1 x y + R y y B
290 288 289 34 rspcdva φ x 1 +∞ n 1 x R x n x n B
291 283 290 eqbrtrrd φ x 1 +∞ n 1 x R x n x n B
292 265 266 33 lemuldivd φ x 1 +∞ n 1 x R x n x n B R x n x B n
293 291 292 mpbid φ x 1 +∞ n 1 x R x n x B n
294 266 recnd φ x 1 +∞ n 1 x B
295 294 278 280 divrec2d φ x 1 +∞ n 1 x B n = 1 n B
296 293 295 breqtrd φ x 1 +∞ n 1 x R x n x 1 n B
297 29 265 267 296 fsumle φ x 1 +∞ n = 1 x R x n x n = 1 x 1 n B
298 29 50 47 51 fsumdivc φ x 1 +∞ n = 1 x R x n x = n = 1 x R x n x
299 259 rpcnd φ x 1 +∞ B
300 262 recnd φ x 1 +∞ n 1 x 1 n
301 29 299 300 fsummulc1 φ x 1 +∞ n = 1 x 1 n B = n = 1 x 1 n B
302 297 298 301 3brtr4d φ x 1 +∞ n = 1 x R x n x n = 1 x 1 n B
303 259 rpge0d φ x 1 +∞ 0 B
304 harmonicubnd x 1 x n = 1 x 1 n log x + 1
305 7 14 304 syl2anc φ x 1 +∞ n = 1 x 1 n log x + 1
306 263 258 260 303 305 lemul1ad φ x 1 +∞ n = 1 x 1 n B log x + 1 B
307 257 264 261 302 306 letrd φ x 1 +∞ n = 1 x R x n x log x + 1 B
308 257 261 78 111 307 lemul2ad φ x 1 +∞ 2 log x n = 1 x R x n x 2 log x log x + 1 B
309 28 48 50 51 divassd φ x 1 +∞ 2 log x n = 1 x R x n x = 2 log x n = 1 x R x n x
310 242 recnd φ x 1 +∞ 1 + 1 log x
311 25 299 310 mul32d φ x 1 +∞ 2 B 1 + 1 log x = 2 1 + 1 log x B
312 1cnd φ x 1 +∞ 1
313 23 312 23 27 divdird φ x 1 +∞ log x + 1 log x = log x log x + 1 log x
314 23 27 dividd φ x 1 +∞ log x log x = 1
315 314 oveq1d φ x 1 +∞ log x log x + 1 log x = 1 + 1 log x
316 313 315 eqtr2d φ x 1 +∞ 1 + 1 log x = log x + 1 log x
317 316 oveq2d φ x 1 +∞ 2 1 + 1 log x = 2 log x + 1 log x
318 23 312 addcld φ x 1 +∞ log x + 1
319 25 23 318 27 div32d φ x 1 +∞ 2 log x log x + 1 = 2 log x + 1 log x
320 317 319 eqtr4d φ x 1 +∞ 2 1 + 1 log x = 2 log x log x + 1
321 320 oveq1d φ x 1 +∞ 2 1 + 1 log x B = 2 log x log x + 1 B
322 28 318 299 mulassd φ x 1 +∞ 2 log x log x + 1 B = 2 log x log x + 1 B
323 311 321 322 3eqtrd φ x 1 +∞ 2 B 1 + 1 log x = 2 log x log x + 1 B
324 308 309 323 3brtr4d φ x 1 +∞ 2 log x n = 1 x R x n x 2 B 1 + 1 log x
325 324 adantrr φ x 1 +∞ 1 x 2 log x n = 1 x R x n x 2 B 1 + 1 log x
326 86 255 256 85 325 lo1le φ x 1 +∞ 2 log x n = 1 x R x n x 𝑂1
327 82 85 236 326 lo1add φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n + 1 x + 2 log x n = 1 x R x n x 𝑂1
328 75 327 eqeltrrd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x 𝑂1