Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|
2 |
|
ssidd |
|
3 |
|
1red |
|
4 |
|
fzfid |
|
5 |
|
elfznn |
|
6 |
5
|
adantl |
|
7 |
|
nnrp |
|
8 |
1
|
pntrf |
|
9 |
8
|
ffvelrni |
|
10 |
7 9
|
syl |
|
11 |
|
peano2nn |
|
12 |
|
nnmulcl |
|
13 |
11 12
|
mpdan |
|
14 |
10 13
|
nndivred |
|
15 |
14
|
recnd |
|
16 |
6 15
|
syl |
|
17 |
4 16
|
fsumcl |
|
18 |
1
|
pntrsumo1 |
|
19 |
18
|
a1i |
|
20 |
|
fzfid |
|
21 |
|
elfznn |
|
22 |
21
|
adantl |
|
23 |
22 15
|
syl |
|
24 |
23
|
abscld |
|
25 |
20 24
|
fsumrecl |
|
26 |
17
|
adantr |
|
27 |
26
|
abscld |
|
28 |
|
fzfid |
|
29 |
16
|
adantlr |
|
30 |
29
|
abscld |
|
31 |
28 30
|
fsumrecl |
|
32 |
25
|
ad2ant2r |
|
33 |
28 29
|
fsumabs |
|
34 |
|
fzfid |
|
35 |
21
|
adantl |
|
36 |
35 15
|
syl |
|
37 |
36
|
abscld |
|
38 |
36
|
absge0d |
|
39 |
|
simplr |
|
40 |
|
simprll |
|
41 |
|
simprr |
|
42 |
39 40 41
|
ltled |
|
43 |
|
flword2 |
|
44 |
39 40 42 43
|
syl3anc |
|
45 |
|
fzss2 |
|
46 |
44 45
|
syl |
|
47 |
34 37 38 46
|
fsumless |
|
48 |
27 31 32 33 47
|
letrd |
|
49 |
2 3 17 19 25 48
|
o1bddrp |
|
50 |
49
|
mptru |
|
51 |
|
zre |
|
52 |
51
|
imim1i |
|
53 |
|
flid |
|
54 |
53
|
oveq2d |
|
55 |
54
|
sumeq1d |
|
56 |
55
|
fveq2d |
|
57 |
56
|
breq1d |
|
58 |
52 57
|
mpbidi |
|
59 |
58
|
ralimi2 |
|
60 |
59
|
reximi |
|
61 |
50 60
|
ax-mp |
|