| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
|
| 2 |
|
ssidd |
|
| 3 |
|
1red |
|
| 4 |
|
fzfid |
|
| 5 |
|
elfznn |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nnrp |
|
| 8 |
1
|
pntrf |
|
| 9 |
8
|
ffvelcdmi |
|
| 10 |
7 9
|
syl |
|
| 11 |
|
peano2nn |
|
| 12 |
|
nnmulcl |
|
| 13 |
11 12
|
mpdan |
|
| 14 |
10 13
|
nndivred |
|
| 15 |
14
|
recnd |
|
| 16 |
6 15
|
syl |
|
| 17 |
4 16
|
fsumcl |
|
| 18 |
1
|
pntrsumo1 |
|
| 19 |
18
|
a1i |
|
| 20 |
|
fzfid |
|
| 21 |
|
elfznn |
|
| 22 |
21
|
adantl |
|
| 23 |
22 15
|
syl |
|
| 24 |
23
|
abscld |
|
| 25 |
20 24
|
fsumrecl |
|
| 26 |
17
|
adantr |
|
| 27 |
26
|
abscld |
|
| 28 |
|
fzfid |
|
| 29 |
16
|
adantlr |
|
| 30 |
29
|
abscld |
|
| 31 |
28 30
|
fsumrecl |
|
| 32 |
25
|
ad2ant2r |
|
| 33 |
28 29
|
fsumabs |
|
| 34 |
|
fzfid |
|
| 35 |
21
|
adantl |
|
| 36 |
35 15
|
syl |
|
| 37 |
36
|
abscld |
|
| 38 |
36
|
absge0d |
|
| 39 |
|
simplr |
|
| 40 |
|
simprll |
|
| 41 |
|
simprr |
|
| 42 |
39 40 41
|
ltled |
|
| 43 |
|
flword2 |
|
| 44 |
39 40 42 43
|
syl3anc |
|
| 45 |
|
fzss2 |
|
| 46 |
44 45
|
syl |
|
| 47 |
34 37 38 46
|
fsumless |
|
| 48 |
27 31 32 33 47
|
letrd |
|
| 49 |
2 3 17 19 25 48
|
o1bddrp |
|
| 50 |
49
|
mptru |
|
| 51 |
|
zre |
|
| 52 |
51
|
imim1i |
|
| 53 |
|
flid |
|
| 54 |
53
|
oveq2d |
|
| 55 |
54
|
sumeq1d |
|
| 56 |
55
|
fveq2d |
|
| 57 |
56
|
breq1d |
|
| 58 |
52 57
|
mpbidi |
|
| 59 |
58
|
ralimi2 |
|
| 60 |
59
|
reximi |
|
| 61 |
50 60
|
ax-mp |
|