Metamath Proof Explorer


Theorem pntrsumbnd

Description: A bound on a sum over R . Equation 10.1.16 of Shapiro, p. 403. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypothesis pntrval.r R = a + ψ a a
Assertion pntrsumbnd c + m n = 1 m R n n n + 1 c

Proof

Step Hyp Ref Expression
1 pntrval.r R = a + ψ a a
2 ssidd
3 1red 1
4 fzfid m 1 m Fin
5 elfznn n 1 m n
6 5 adantl m n 1 m n
7 nnrp n n +
8 1 pntrf R : +
9 8 ffvelrni n + R n
10 7 9 syl n R n
11 peano2nn n n + 1
12 nnmulcl n n + 1 n n + 1
13 11 12 mpdan n n n + 1
14 10 13 nndivred n R n n n + 1
15 14 recnd n R n n n + 1
16 6 15 syl m n 1 m R n n n + 1
17 4 16 fsumcl m n = 1 m R n n n + 1
18 1 pntrsumo1 m n = 1 m R n n n + 1 𝑂1
19 18 a1i m n = 1 m R n n n + 1 𝑂1
20 fzfid x 1 x 1 x Fin
21 elfznn n 1 x n
22 21 adantl x 1 x n 1 x n
23 22 15 syl x 1 x n 1 x R n n n + 1
24 23 abscld x 1 x n 1 x R n n n + 1
25 20 24 fsumrecl x 1 x n = 1 x R n n n + 1
26 17 adantr m x 1 x m < x n = 1 m R n n n + 1
27 26 abscld m x 1 x m < x n = 1 m R n n n + 1
28 fzfid m x 1 x m < x 1 m Fin
29 16 adantlr m x 1 x m < x n 1 m R n n n + 1
30 29 abscld m x 1 x m < x n 1 m R n n n + 1
31 28 30 fsumrecl m x 1 x m < x n = 1 m R n n n + 1
32 25 ad2ant2r m x 1 x m < x n = 1 x R n n n + 1
33 28 29 fsumabs m x 1 x m < x n = 1 m R n n n + 1 n = 1 m R n n n + 1
34 fzfid m x 1 x m < x 1 x Fin
35 21 adantl m x 1 x m < x n 1 x n
36 35 15 syl m x 1 x m < x n 1 x R n n n + 1
37 36 abscld m x 1 x m < x n 1 x R n n n + 1
38 36 absge0d m x 1 x m < x n 1 x 0 R n n n + 1
39 simplr m x 1 x m < x m
40 simprll m x 1 x m < x x
41 simprr m x 1 x m < x m < x
42 39 40 41 ltled m x 1 x m < x m x
43 flword2 m x m x x m
44 39 40 42 43 syl3anc m x 1 x m < x x m
45 fzss2 x m 1 m 1 x
46 44 45 syl m x 1 x m < x 1 m 1 x
47 34 37 38 46 fsumless m x 1 x m < x n = 1 m R n n n + 1 n = 1 x R n n n + 1
48 27 31 32 33 47 letrd m x 1 x m < x n = 1 m R n n n + 1 n = 1 x R n n n + 1
49 2 3 17 19 25 48 o1bddrp c + m n = 1 m R n n n + 1 c
50 49 mptru c + m n = 1 m R n n n + 1 c
51 zre m m
52 51 imim1i m n = 1 m R n n n + 1 c m n = 1 m R n n n + 1 c
53 flid m m = m
54 53 oveq2d m 1 m = 1 m
55 54 sumeq1d m n = 1 m R n n n + 1 = n = 1 m R n n n + 1
56 55 fveq2d m n = 1 m R n n n + 1 = n = 1 m R n n n + 1
57 56 breq1d m n = 1 m R n n n + 1 c n = 1 m R n n n + 1 c
58 52 57 mpbidi m n = 1 m R n n n + 1 c m n = 1 m R n n n + 1 c
59 58 ralimi2 m n = 1 m R n n n + 1 c m n = 1 m R n n n + 1 c
60 59 reximi c + m n = 1 m R n n n + 1 c c + m n = 1 m R n n n + 1 c
61 50 60 ax-mp c + m n = 1 m R n n n + 1 c