Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
pntsf
Next ⟩
selbergs
Metamath Proof Explorer
Ascii
Unicode
Theorem
pntsf
Description:
Functionality of the Selberg function.
(Contributed by
Mario Carneiro
, 31-May-2016)
Ref
Expression
Hypothesis
pntsval.1
⊢
S
=
a
∈
ℝ
⟼
∑
i
=
1
a
Λ
⁡
i
⁢
log
⁡
i
+
ψ
⁡
a
i
Assertion
pntsf
⊢
S
:
ℝ
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
pntsval.1
⊢
S
=
a
∈
ℝ
⟼
∑
i
=
1
a
Λ
⁡
i
⁢
log
⁡
i
+
ψ
⁡
a
i
2
fzfid
⊢
a
∈
ℝ
→
1
…
a
∈
Fin
3
elfznn
⊢
i
∈
1
…
a
→
i
∈
ℕ
4
3
adantl
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
i
∈
ℕ
5
vmacl
⊢
i
∈
ℕ
→
Λ
⁡
i
∈
ℝ
6
4
5
syl
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
Λ
⁡
i
∈
ℝ
7
4
nnrpd
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
i
∈
ℝ
+
8
7
relogcld
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
log
⁡
i
∈
ℝ
9
simpl
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
a
∈
ℝ
10
9
4
nndivred
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
a
i
∈
ℝ
11
chpcl
⊢
a
i
∈
ℝ
→
ψ
⁡
a
i
∈
ℝ
12
10
11
syl
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
ψ
⁡
a
i
∈
ℝ
13
8
12
readdcld
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
log
⁡
i
+
ψ
⁡
a
i
∈
ℝ
14
6
13
remulcld
⊢
a
∈
ℝ
∧
i
∈
1
…
a
→
Λ
⁡
i
⁢
log
⁡
i
+
ψ
⁡
a
i
∈
ℝ
15
2
14
fsumrecl
⊢
a
∈
ℝ
→
∑
i
=
1
a
Λ
⁡
i
⁢
log
⁡
i
+
ψ
⁡
a
i
∈
ℝ
16
1
15
fmpti
⊢
S
:
ℝ
⟶
ℝ