Metamath Proof Explorer


Theorem pntsf

Description: Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S = a i = 1 a Λ i log i + ψ a i
Assertion pntsf S :

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 fzfid a 1 a Fin
3 elfznn i 1 a i
4 3 adantl a i 1 a i
5 vmacl i Λ i
6 4 5 syl a i 1 a Λ i
7 4 nnrpd a i 1 a i +
8 7 relogcld a i 1 a log i
9 simpl a i 1 a a
10 9 4 nndivred a i 1 a a i
11 chpcl a i ψ a i
12 10 11 syl a i 1 a ψ a i
13 8 12 readdcld a i 1 a log i + ψ a i
14 6 13 remulcld a i 1 a Λ i log i + ψ a i
15 2 14 fsumrecl a i = 1 a Λ i log i + ψ a i
16 1 15 fmpti S :