Metamath Proof Explorer


Theorem po0

Description: Any relation is a partial order on the empty set. (Contributed by NM, 28-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion po0 R Po

Proof

Step Hyp Ref Expression
1 ral0 x y z ¬ x R x x R y y R z x R z
2 df-po R Po x y z ¬ x R x x R y y R z x R z
3 1 2 mpbir R Po