Metamath Proof Explorer


Theorem pocl

Description: Characteristic properties of a partial order in class notation. (Contributed by NM, 27-Mar-1997) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion pocl R Po A B A C A D A ¬ B R B B R C C R D B R D

Proof

Step Hyp Ref Expression
1 df-po R Po A x A y A z A ¬ x R x x R y y R z x R z
2 1 biimpi R Po A x A y A z A ¬ x R x x R y y R z x R z
3 id x = B x = B
4 3 3 breq12d x = B x R x B R B
5 4 notbid x = B ¬ x R x ¬ B R B
6 breq1 x = B x R y B R y
7 6 anbi1d x = B x R y y R z B R y y R z
8 breq1 x = B x R z B R z
9 7 8 imbi12d x = B x R y y R z x R z B R y y R z B R z
10 5 9 anbi12d x = B ¬ x R x x R y y R z x R z ¬ B R B B R y y R z B R z
11 breq2 y = C B R y B R C
12 breq1 y = C y R z C R z
13 11 12 anbi12d y = C B R y y R z B R C C R z
14 13 imbi1d y = C B R y y R z B R z B R C C R z B R z
15 14 anbi2d y = C ¬ B R B B R y y R z B R z ¬ B R B B R C C R z B R z
16 breq2 z = D C R z C R D
17 16 anbi2d z = D B R C C R z B R C C R D
18 breq2 z = D B R z B R D
19 17 18 imbi12d z = D B R C C R z B R z B R C C R D B R D
20 19 anbi2d z = D ¬ B R B B R C C R z B R z ¬ B R B B R C C R D B R D
21 10 15 20 rspc3v B A C A D A x A y A z A ¬ x R x x R y y R z x R z ¬ B R B B R C C R D B R D
22 2 21 syl5com R Po A B A C A D A ¬ B R B B R C C R D B R D