Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
poeq1
Next ⟩
poeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
poeq1
Description:
Equality theorem for partial ordering predicate.
(Contributed by
NM
, 27-Mar-1997)
Ref
Expression
Assertion
poeq1
⊢
R
=
S
→
R
Po
A
↔
S
Po
A
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
R
=
S
→
x
R
x
↔
x
S
x
2
1
notbid
⊢
R
=
S
→
¬
x
R
x
↔
¬
x
S
x
3
breq
⊢
R
=
S
→
x
R
y
↔
x
S
y
4
breq
⊢
R
=
S
→
y
R
z
↔
y
S
z
5
3
4
anbi12d
⊢
R
=
S
→
x
R
y
∧
y
R
z
↔
x
S
y
∧
y
S
z
6
breq
⊢
R
=
S
→
x
R
z
↔
x
S
z
7
5
6
imbi12d
⊢
R
=
S
→
x
R
y
∧
y
R
z
→
x
R
z
↔
x
S
y
∧
y
S
z
→
x
S
z
8
2
7
anbi12d
⊢
R
=
S
→
¬
x
R
x
∧
x
R
y
∧
y
R
z
→
x
R
z
↔
¬
x
S
x
∧
x
S
y
∧
y
S
z
→
x
S
z
9
8
ralbidv
⊢
R
=
S
→
∀
z
∈
A
¬
x
R
x
∧
x
R
y
∧
y
R
z
→
x
R
z
↔
∀
z
∈
A
¬
x
S
x
∧
x
S
y
∧
y
S
z
→
x
S
z
10
9
2ralbidv
⊢
R
=
S
→
∀
x
∈
A
∀
y
∈
A
∀
z
∈
A
¬
x
R
x
∧
x
R
y
∧
y
R
z
→
x
R
z
↔
∀
x
∈
A
∀
y
∈
A
∀
z
∈
A
¬
x
S
x
∧
x
S
y
∧
y
S
z
→
x
S
z
11
df-po
⊢
R
Po
A
↔
∀
x
∈
A
∀
y
∈
A
∀
z
∈
A
¬
x
R
x
∧
x
R
y
∧
y
R
z
→
x
R
z
12
df-po
⊢
S
Po
A
↔
∀
x
∈
A
∀
y
∈
A
∀
z
∈
A
¬
x
S
x
∧
x
S
y
∧
y
S
z
→
x
S
z
13
10
11
12
3bitr4g
⊢
R
=
S
→
R
Po
A
↔
S
Po
A