Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
poeq2
Next ⟩
nfpo
Metamath Proof Explorer
Ascii
Unicode
Theorem
poeq2
Description:
Equality theorem for partial ordering predicate.
(Contributed by
NM
, 27-Mar-1997)
Ref
Expression
Assertion
poeq2
⊢
A
=
B
→
R
Po
A
↔
R
Po
B
Proof
Step
Hyp
Ref
Expression
1
eqimss2
⊢
A
=
B
→
B
⊆
A
2
poss
⊢
B
⊆
A
→
R
Po
A
→
R
Po
B
3
1
2
syl
⊢
A
=
B
→
R
Po
A
→
R
Po
B
4
eqimss
⊢
A
=
B
→
A
⊆
B
5
poss
⊢
A
⊆
B
→
R
Po
B
→
R
Po
A
6
4
5
syl
⊢
A
=
B
→
R
Po
B
→
R
Po
A
7
3
6
impbid
⊢
A
=
B
→
R
Po
A
↔
R
Po
B