Metamath Proof Explorer


Theorem poeq2

Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poeq2 A = B R Po A R Po B

Proof

Step Hyp Ref Expression
1 eqimss2 A = B B A
2 poss B A R Po A R Po B
3 1 2 syl A = B R Po A R Po B
4 eqimss A = B A B
5 poss A B R Po B R Po A
6 4 5 syl A = B R Po B R Po A
7 3 6 impbid A = B R Po A R Po B