Metamath Proof Explorer


Theorem poimirlem6

Description: Lemma for poimir establishing, for a face of a simplex defined by a walk along the edges of an N -cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
poimirlem9.1 φ T S
poimirlem9.2 φ 2 nd T 1 N 1
poimirlem6.3 φ M 1 2 nd T 1
Assertion poimirlem6 φ ι n 1 N | F M 1 n F M n = 2 nd 1 st T M

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
3 poimirlem9.1 φ T S
4 poimirlem9.2 φ 2 nd T 1 N 1
5 poimirlem6.3 φ M 1 2 nd T 1
6 elrabi T t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
7 6 2 eleq2s T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
8 3 7 syl φ T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
9 xp1st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
10 8 9 syl φ 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
11 xp2nd 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
12 10 11 syl φ 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
13 fvex 2 nd 1 st T V
14 f1oeq1 f = 2 nd 1 st T f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
15 13 14 elab 2 nd 1 st T f | f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
16 12 15 sylib φ 2 nd 1 st T : 1 N 1-1 onto 1 N
17 f1of 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1 N
18 16 17 syl φ 2 nd 1 st T : 1 N 1 N
19 elfznn 2 nd T 1 N 1 2 nd T
20 4 19 syl φ 2 nd T
21 20 nnzd φ 2 nd T
22 peano2zm 2 nd T 2 nd T 1
23 21 22 syl φ 2 nd T 1
24 1 nnzd φ N
25 23 zred φ 2 nd T 1
26 20 nnred φ 2 nd T
27 1 nnred φ N
28 26 lem1d φ 2 nd T 1 2 nd T
29 nnm1nn0 N N 1 0
30 1 29 syl φ N 1 0
31 30 nn0red φ N 1
32 elfzle2 2 nd T 1 N 1 2 nd T N 1
33 4 32 syl φ 2 nd T N 1
34 27 lem1d φ N 1 N
35 26 31 27 33 34 letrd φ 2 nd T N
36 25 26 27 28 35 letrd φ 2 nd T 1 N
37 eluz2 N 2 nd T 1 2 nd T 1 N 2 nd T 1 N
38 23 24 36 37 syl3anbrc φ N 2 nd T 1
39 fzss2 N 2 nd T 1 1 2 nd T 1 1 N
40 38 39 syl φ 1 2 nd T 1 1 N
41 40 5 sseldd φ M 1 N
42 18 41 ffvelrnd φ 2 nd 1 st T M 1 N
43 xp1st 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st T 0 ..^ K 1 N
44 10 43 syl φ 1 st 1 st T 0 ..^ K 1 N
45 elmapfn 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T Fn 1 N
46 44 45 syl φ 1 st 1 st T Fn 1 N
47 46 adantr φ n 2 nd 1 st T M 1 st 1 st T Fn 1 N
48 1ex 1 V
49 fnconstg 1 V 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1
50 48 49 ax-mp 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1
51 c0ex 0 V
52 fnconstg 0 V 2 nd 1 st T M N × 0 Fn 2 nd 1 st T M N
53 51 52 ax-mp 2 nd 1 st T M N × 0 Fn 2 nd 1 st T M N
54 50 53 pm3.2i 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T M N
55 dff1o3 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N onto 1 N Fun 2 nd 1 st T -1
56 55 simprbi 2 nd 1 st T : 1 N 1-1 onto 1 N Fun 2 nd 1 st T -1
57 16 56 syl φ Fun 2 nd 1 st T -1
58 imain Fun 2 nd 1 st T -1 2 nd 1 st T 1 M 1 M N = 2 nd 1 st T 1 M 1 2 nd 1 st T M N
59 57 58 syl φ 2 nd 1 st T 1 M 1 M N = 2 nd 1 st T 1 M 1 2 nd 1 st T M N
60 elfznn M 1 2 nd T 1 M
61 5 60 syl φ M
62 61 nnred φ M
63 62 ltm1d φ M 1 < M
64 fzdisj M 1 < M 1 M 1 M N =
65 63 64 syl φ 1 M 1 M N =
66 65 imaeq2d φ 2 nd 1 st T 1 M 1 M N = 2 nd 1 st T
67 ima0 2 nd 1 st T =
68 66 67 syl6eq φ 2 nd 1 st T 1 M 1 M N =
69 59 68 eqtr3d φ 2 nd 1 st T 1 M 1 2 nd 1 st T M N =
70 fnun 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T M N 2 nd 1 st T 1 M 1 2 nd 1 st T M N = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N
71 54 69 70 sylancr φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N
72 61 nncnd φ M
73 npcan1 M M - 1 + 1 = M
74 72 73 syl φ M - 1 + 1 = M
75 nnuz = 1
76 61 75 eleqtrdi φ M 1
77 74 76 eqeltrd φ M - 1 + 1 1
78 nnm1nn0 M M 1 0
79 61 78 syl φ M 1 0
80 79 nn0zd φ M 1
81 uzid M 1 M 1 M 1
82 80 81 syl φ M 1 M 1
83 peano2uz M 1 M 1 M - 1 + 1 M 1
84 82 83 syl φ M - 1 + 1 M 1
85 74 84 eqeltrrd φ M M 1
86 uzss M M 1 M M 1
87 85 86 syl φ M M 1
88 61 nnzd φ M
89 elfzle2 M 1 2 nd T 1 M 2 nd T 1
90 5 89 syl φ M 2 nd T 1
91 62 25 27 90 36 letrd φ M N
92 eluz2 N M M N M N
93 88 24 91 92 syl3anbrc φ N M
94 87 93 sseldd φ N M 1
95 fzsplit2 M - 1 + 1 1 N M 1 1 N = 1 M 1 M - 1 + 1 N
96 77 94 95 syl2anc φ 1 N = 1 M 1 M - 1 + 1 N
97 74 oveq1d φ M - 1 + 1 N = M N
98 97 uneq2d φ 1 M 1 M - 1 + 1 N = 1 M 1 M N
99 96 98 eqtrd φ 1 N = 1 M 1 M N
100 99 imaeq2d φ 2 nd 1 st T 1 N = 2 nd 1 st T 1 M 1 M N
101 imaundi 2 nd 1 st T 1 M 1 M N = 2 nd 1 st T 1 M 1 2 nd 1 st T M N
102 100 101 syl6eq φ 2 nd 1 st T 1 N = 2 nd 1 st T 1 M 1 2 nd 1 st T M N
103 f1ofo 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N onto 1 N
104 16 103 syl φ 2 nd 1 st T : 1 N onto 1 N
105 foima 2 nd 1 st T : 1 N onto 1 N 2 nd 1 st T 1 N = 1 N
106 104 105 syl φ 2 nd 1 st T 1 N = 1 N
107 102 106 eqtr3d φ 2 nd 1 st T 1 M 1 2 nd 1 st T M N = 1 N
108 107 fneq2d φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 1 N
109 71 108 mpbid φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 1 N
110 109 adantr φ n 2 nd 1 st T M 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 Fn 1 N
111 ovexd φ n 2 nd 1 st T M 1 N V
112 inidm 1 N 1 N = 1 N
113 eqidd φ n 2 nd 1 st T M n 1 N 1 st 1 st T n = 1 st 1 st T n
114 imaundi 2 nd 1 st T M M + 1 N = 2 nd 1 st T M 2 nd 1 st T M + 1 N
115 fzpred N M M N = M M + 1 N
116 93 115 syl φ M N = M M + 1 N
117 116 imaeq2d φ 2 nd 1 st T M N = 2 nd 1 st T M M + 1 N
118 f1ofn 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd 1 st T Fn 1 N
119 16 118 syl φ 2 nd 1 st T Fn 1 N
120 fnsnfv 2 nd 1 st T Fn 1 N M 1 N 2 nd 1 st T M = 2 nd 1 st T M
121 119 41 120 syl2anc φ 2 nd 1 st T M = 2 nd 1 st T M
122 121 uneq1d φ 2 nd 1 st T M 2 nd 1 st T M + 1 N = 2 nd 1 st T M 2 nd 1 st T M + 1 N
123 114 117 122 3eqtr4a φ 2 nd 1 st T M N = 2 nd 1 st T M 2 nd 1 st T M + 1 N
124 123 xpeq1d φ 2 nd 1 st T M N × 0 = 2 nd 1 st T M 2 nd 1 st T M + 1 N × 0
125 xpundir 2 nd 1 st T M 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T M × 0 2 nd 1 st T M + 1 N × 0
126 124 125 syl6eq φ 2 nd 1 st T M N × 0 = 2 nd 1 st T M × 0 2 nd 1 st T M + 1 N × 0
127 126 uneq2d φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 0 2 nd 1 st T M + 1 N × 0
128 un12 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 0 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0
129 127 128 syl6eq φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 = 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0
130 129 fveq1d φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
131 130 ad2antrr φ n 2 nd 1 st T M n 1 N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
132 fnconstg 0 V 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
133 51 132 ax-mp 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
134 50 133 pm3.2i 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
135 imain Fun 2 nd 1 st T -1 2 nd 1 st T 1 M 1 M + 1 N = 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N
136 57 135 syl φ 2 nd 1 st T 1 M 1 M + 1 N = 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N
137 79 nn0red φ M 1
138 peano2re M M + 1
139 62 138 syl φ M + 1
140 62 ltp1d φ M < M + 1
141 137 62 139 63 140 lttrd φ M 1 < M + 1
142 fzdisj M 1 < M + 1 1 M 1 M + 1 N =
143 141 142 syl φ 1 M 1 M + 1 N =
144 143 imaeq2d φ 2 nd 1 st T 1 M 1 M + 1 N = 2 nd 1 st T
145 144 67 syl6eq φ 2 nd 1 st T 1 M 1 M + 1 N =
146 136 145 eqtr3d φ 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N =
147 fnun 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N
148 134 146 147 sylancr φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N
149 imaundi 2 nd 1 st T 1 M 1 M + 1 N = 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N
150 imadif Fun 2 nd 1 st T -1 2 nd 1 st T 1 N M = 2 nd 1 st T 1 N 2 nd 1 st T M
151 57 150 syl φ 2 nd 1 st T 1 N M = 2 nd 1 st T 1 N 2 nd 1 st T M
152 fzsplit M 1 N 1 N = 1 M M + 1 N
153 41 152 syl φ 1 N = 1 M M + 1 N
154 153 difeq1d φ 1 N M = 1 M M + 1 N M
155 difundir 1 M M + 1 N M = 1 M M M + 1 N M
156 fzsplit2 M - 1 + 1 1 M M 1 1 M = 1 M 1 M - 1 + 1 M
157 77 85 156 syl2anc φ 1 M = 1 M 1 M - 1 + 1 M
158 74 oveq1d φ M - 1 + 1 M = M M
159 fzsn M M M = M
160 88 159 syl φ M M = M
161 158 160 eqtrd φ M - 1 + 1 M = M
162 161 uneq2d φ 1 M 1 M - 1 + 1 M = 1 M 1 M
163 157 162 eqtrd φ 1 M = 1 M 1 M
164 163 difeq1d φ 1 M M = 1 M 1 M M
165 difun2 1 M 1 M M = 1 M 1 M
166 137 62 ltnled φ M 1 < M ¬ M M 1
167 63 166 mpbid φ ¬ M M 1
168 elfzle2 M 1 M 1 M M 1
169 167 168 nsyl φ ¬ M 1 M 1
170 difsn ¬ M 1 M 1 1 M 1 M = 1 M 1
171 169 170 syl φ 1 M 1 M = 1 M 1
172 165 171 syl5eq φ 1 M 1 M M = 1 M 1
173 164 172 eqtrd φ 1 M M = 1 M 1
174 62 139 ltnled φ M < M + 1 ¬ M + 1 M
175 140 174 mpbid φ ¬ M + 1 M
176 elfzle1 M M + 1 N M + 1 M
177 175 176 nsyl φ ¬ M M + 1 N
178 difsn ¬ M M + 1 N M + 1 N M = M + 1 N
179 177 178 syl φ M + 1 N M = M + 1 N
180 173 179 uneq12d φ 1 M M M + 1 N M = 1 M 1 M + 1 N
181 155 180 syl5eq φ 1 M M + 1 N M = 1 M 1 M + 1 N
182 154 181 eqtrd φ 1 N M = 1 M 1 M + 1 N
183 182 imaeq2d φ 2 nd 1 st T 1 N M = 2 nd 1 st T 1 M 1 M + 1 N
184 121 eqcomd φ 2 nd 1 st T M = 2 nd 1 st T M
185 106 184 difeq12d φ 2 nd 1 st T 1 N 2 nd 1 st T M = 1 N 2 nd 1 st T M
186 151 183 185 3eqtr3d φ 2 nd 1 st T 1 M 1 M + 1 N = 1 N 2 nd 1 st T M
187 149 186 syl5eqr φ 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N = 1 N 2 nd 1 st T M
188 187 fneq2d φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M
189 148 188 mpbid φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M
190 eldifsn n 1 N 2 nd 1 st T M n 1 N n 2 nd 1 st T M
191 190 biimpri n 1 N n 2 nd 1 st T M n 1 N 2 nd 1 st T M
192 191 ancoms n 2 nd 1 st T M n 1 N n 1 N 2 nd 1 st T M
193 disjdif 2 nd 1 st T M 1 N 2 nd 1 st T M =
194 fnconstg 0 V 2 nd 1 st T M × 0 Fn 2 nd 1 st T M
195 51 194 ax-mp 2 nd 1 st T M × 0 Fn 2 nd 1 st T M
196 fvun2 2 nd 1 st T M × 0 Fn 2 nd 1 st T M 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M 2 nd 1 st T M 1 N 2 nd 1 st T M = n 1 N 2 nd 1 st T M 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
197 195 196 mp3an1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M 2 nd 1 st T M 1 N 2 nd 1 st T M = n 1 N 2 nd 1 st T M 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
198 193 197 mpanr1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M n 1 N 2 nd 1 st T M 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
199 189 192 198 syl2an φ n 2 nd 1 st T M n 1 N 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
200 199 anassrs φ n 2 nd 1 st T M n 1 N 2 nd 1 st T M × 0 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
201 131 200 eqtrd φ n 2 nd 1 st T M n 1 N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
202 47 110 111 111 112 113 201 ofval φ n 2 nd 1 st T M n 1 N 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 1 st 1 st T n + 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
203 fnconstg 1 V 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M
204 48 203 ax-mp 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M
205 204 133 pm3.2i 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N
206 imain Fun 2 nd 1 st T -1 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
207 57 206 syl φ 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
208 fzdisj M < M + 1 1 M M + 1 N =
209 140 208 syl φ 1 M M + 1 N =
210 209 imaeq2d φ 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T
211 210 67 syl6eq φ 2 nd 1 st T 1 M M + 1 N =
212 207 211 eqtr3d φ 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N =
213 fnun 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
214 205 212 213 sylancr φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
215 153 imaeq2d φ 2 nd 1 st T 1 N = 2 nd 1 st T 1 M M + 1 N
216 imaundi 2 nd 1 st T 1 M M + 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
217 215 216 syl6eq φ 2 nd 1 st T 1 N = 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N
218 217 106 eqtr3d φ 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 1 N
219 218 fneq2d φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
220 214 219 mpbid φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
221 220 adantr φ n 2 nd 1 st T M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N
222 imaundi 2 nd 1 st T 1 M 1 M = 2 nd 1 st T 1 M 1 2 nd 1 st T M
223 163 imaeq2d φ 2 nd 1 st T 1 M = 2 nd 1 st T 1 M 1 M
224 121 uneq2d φ 2 nd 1 st T 1 M 1 2 nd 1 st T M = 2 nd 1 st T 1 M 1 2 nd 1 st T M
225 222 223 224 3eqtr4a φ 2 nd 1 st T 1 M = 2 nd 1 st T 1 M 1 2 nd 1 st T M
226 225 xpeq1d φ 2 nd 1 st T 1 M × 1 = 2 nd 1 st T 1 M 1 2 nd 1 st T M × 1
227 xpundir 2 nd 1 st T 1 M 1 2 nd 1 st T M × 1 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 1
228 226 227 syl6eq φ 2 nd 1 st T 1 M × 1 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 1
229 228 uneq1d φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 1 2 nd 1 st T M + 1 N × 0
230 un23 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 1 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M × 1
231 230 equncomi 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M × 1 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0
232 229 231 syl6eq φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 = 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0
233 232 fveq1d φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
234 233 ad2antrr φ n 2 nd 1 st T M n 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
235 fnconstg 1 V 2 nd 1 st T M × 1 Fn 2 nd 1 st T M
236 48 235 ax-mp 2 nd 1 st T M × 1 Fn 2 nd 1 st T M
237 fvun2 2 nd 1 st T M × 1 Fn 2 nd 1 st T M 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M 2 nd 1 st T M 1 N 2 nd 1 st T M = n 1 N 2 nd 1 st T M 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
238 236 237 mp3an1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M 2 nd 1 st T M 1 N 2 nd 1 st T M = n 1 N 2 nd 1 st T M 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
239 193 238 mpanr1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 Fn 1 N 2 nd 1 st T M n 1 N 2 nd 1 st T M 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
240 189 192 239 syl2an φ n 2 nd 1 st T M n 1 N 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
241 240 anassrs φ n 2 nd 1 st T M n 1 N 2 nd 1 st T M × 1 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
242 234 241 eqtrd φ n 2 nd 1 st T M n 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
243 47 221 111 111 112 113 242 ofval φ n 2 nd 1 st T M n 1 N 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n = 1 st 1 st T n + 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M + 1 N × 0 n
244 202 243 eqtr4d φ n 2 nd 1 st T M n 1 N 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n
245 244 an32s φ n 1 N n 2 nd 1 st T M 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n
246 245 anasss φ n 1 N n 2 nd 1 st T M 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n
247 fveq2 t = T 2 nd t = 2 nd T
248 247 breq2d t = T y < 2 nd t y < 2 nd T
249 248 ifbid t = T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
250 249 csbeq1d t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
251 2fveq3 t = T 1 st 1 st t = 1 st 1 st T
252 2fveq3 t = T 2 nd 1 st t = 2 nd 1 st T
253 252 imaeq1d t = T 2 nd 1 st t 1 j = 2 nd 1 st T 1 j
254 253 xpeq1d t = T 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 1 j × 1
255 252 imaeq1d t = T 2 nd 1 st t j + 1 N = 2 nd 1 st T j + 1 N
256 255 xpeq1d t = T 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T j + 1 N × 0
257 254 256 uneq12d t = T 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
258 251 257 oveq12d t = T 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
259 258 csbeq2dv t = T if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
260 250 259 eqtrd t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
261 260 mpteq2dv t = T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
262 261 eqeq2d t = T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
263 262 2 elrab2 T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
264 263 simprbi T S F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
265 3 264 syl φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
266 breq1 y = M 1 y < 2 nd T M 1 < 2 nd T
267 id y = M 1 y = M 1
268 266 267 ifbieq1d y = M 1 if y < 2 nd T y y + 1 = if M 1 < 2 nd T M 1 y + 1
269 26 ltm1d φ 2 nd T 1 < 2 nd T
270 62 25 26 90 269 lelttrd φ M < 2 nd T
271 137 62 26 63 270 lttrd φ M 1 < 2 nd T
272 271 iftrued φ if M 1 < 2 nd T M 1 y + 1 = M 1
273 268 272 sylan9eqr φ y = M 1 if y < 2 nd T y y + 1 = M 1
274 273 csbeq1d φ y = M 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = M 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
275 oveq2 j = M 1 1 j = 1 M 1
276 275 imaeq2d j = M 1 2 nd 1 st T 1 j = 2 nd 1 st T 1 M 1
277 276 xpeq1d j = M 1 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 M 1 × 1
278 277 adantl φ j = M 1 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 M 1 × 1
279 oveq1 j = M 1 j + 1 = M - 1 + 1
280 279 74 sylan9eqr φ j = M 1 j + 1 = M
281 280 oveq1d φ j = M 1 j + 1 N = M N
282 281 imaeq2d φ j = M 1 2 nd 1 st T j + 1 N = 2 nd 1 st T M N
283 282 xpeq1d φ j = M 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T M N × 0
284 278 283 uneq12d φ j = M 1 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
285 284 oveq2d φ j = M 1 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
286 79 285 csbied φ M 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
287 286 adantr φ y = M 1 M 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
288 274 287 eqtrd φ y = M 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
289 1red φ 1
290 62 27 289 91 lesub1dd φ M 1 N 1
291 elfz2nn0 M 1 0 N 1 M 1 0 N 1 0 M 1 N 1
292 79 30 290 291 syl3anbrc φ M 1 0 N 1
293 ovexd φ 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 V
294 265 288 292 293 fvmptd φ F M 1 = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0
295 294 fveq1d φ F M 1 n = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n
296 295 adantr φ n 1 N n 2 nd 1 st T M F M 1 n = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 n
297 breq1 y = M y < 2 nd T M < 2 nd T
298 id y = M y = M
299 297 298 ifbieq1d y = M if y < 2 nd T y y + 1 = if M < 2 nd T M y + 1
300 270 iftrued φ if M < 2 nd T M y + 1 = M
301 299 300 sylan9eqr φ y = M if y < 2 nd T y y + 1 = M
302 301 csbeq1d φ y = M if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
303 oveq2 j = M 1 j = 1 M
304 303 imaeq2d j = M 2 nd 1 st T 1 j = 2 nd 1 st T 1 M
305 304 xpeq1d j = M 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 M × 1
306 oveq1 j = M j + 1 = M + 1
307 306 oveq1d j = M j + 1 N = M + 1 N
308 307 imaeq2d j = M 2 nd 1 st T j + 1 N = 2 nd 1 st T M + 1 N
309 308 xpeq1d j = M 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T M + 1 N × 0
310 305 309 uneq12d j = M 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
311 310 oveq2d j = M 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
312 311 adantl φ j = M 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
313 5 312 csbied φ M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
314 313 adantr φ y = M M / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
315 302 314 eqtrd φ y = M if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
316 30 nn0zd φ N 1
317 26 27 289 35 lesub1dd φ 2 nd T 1 N 1
318 eluz2 N 1 2 nd T 1 2 nd T 1 N 1 2 nd T 1 N 1
319 23 316 317 318 syl3anbrc φ N 1 2 nd T 1
320 fzss2 N 1 2 nd T 1 1 2 nd T 1 1 N 1
321 319 320 syl φ 1 2 nd T 1 1 N 1
322 fz1ssfz0 1 N 1 0 N 1
323 321 322 sstrdi φ 1 2 nd T 1 0 N 1
324 323 5 sseldd φ M 0 N 1
325 ovexd φ 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 V
326 265 315 324 325 fvmptd φ F M = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0
327 326 fveq1d φ F M n = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n
328 327 adantr φ n 1 N n 2 nd 1 st T M F M n = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 n
329 246 296 328 3eqtr4d φ n 1 N n 2 nd 1 st T M F M 1 n = F M n
330 329 expr φ n 1 N n 2 nd 1 st T M F M 1 n = F M n
331 330 necon1d φ n 1 N F M 1 n F M n n = 2 nd 1 st T M
332 elmapi 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T : 1 N 0 ..^ K
333 44 332 syl φ 1 st 1 st T : 1 N 0 ..^ K
334 333 42 ffvelrnd φ 1 st 1 st T 2 nd 1 st T M 0 ..^ K
335 elfzonn0 1 st 1 st T 2 nd 1 st T M 0 ..^ K 1 st 1 st T 2 nd 1 st T M 0
336 334 335 syl φ 1 st 1 st T 2 nd 1 st T M 0
337 336 nn0red φ 1 st 1 st T 2 nd 1 st T M
338 337 ltp1d φ 1 st 1 st T 2 nd 1 st T M < 1 st 1 st T 2 nd 1 st T M + 1
339 337 338 ltned φ 1 st 1 st T 2 nd 1 st T M 1 st 1 st T 2 nd 1 st T M + 1
340 294 fveq1d φ F M 1 2 nd 1 st T M = 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M
341 ovexd φ 1 N V
342 eqidd φ 2 nd 1 st T M 1 N 1 st 1 st T 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M
343 fzss1 M 1 M N 1 N
344 76 343 syl φ M N 1 N
345 eluzfz1 N M M M N
346 93 345 syl φ M M N
347 fnfvima 2 nd 1 st T Fn 1 N M N 1 N M M N 2 nd 1 st T M 2 nd 1 st T M N
348 119 344 346 347 syl3anc φ 2 nd 1 st T M 2 nd 1 st T M N
349 fvun2 2 nd 1 st T 1 M 1 × 1 Fn 2 nd 1 st T 1 M 1 2 nd 1 st T M N × 0 Fn 2 nd 1 st T M N 2 nd 1 st T 1 M 1 2 nd 1 st T M N = 2 nd 1 st T M 2 nd 1 st T M N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 2 nd 1 st T M N × 0 2 nd 1 st T M
350 50 53 349 mp3an12 2 nd 1 st T 1 M 1 2 nd 1 st T M N = 2 nd 1 st T M 2 nd 1 st T M N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 2 nd 1 st T M N × 0 2 nd 1 st T M
351 69 348 350 syl2anc φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 2 nd 1 st T M N × 0 2 nd 1 st T M
352 51 fvconst2 2 nd 1 st T M 2 nd 1 st T M N 2 nd 1 st T M N × 0 2 nd 1 st T M = 0
353 348 352 syl φ 2 nd 1 st T M N × 0 2 nd 1 st T M = 0
354 351 353 eqtrd φ 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 0
355 354 adantr φ 2 nd 1 st T M 1 N 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 0
356 46 109 341 341 112 342 355 ofval φ 2 nd 1 st T M 1 N 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M + 0
357 42 356 mpdan φ 1 st 1 st T + f 2 nd 1 st T 1 M 1 × 1 2 nd 1 st T M N × 0 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M + 0
358 336 nn0cnd φ 1 st 1 st T 2 nd 1 st T M
359 358 addid1d φ 1 st 1 st T 2 nd 1 st T M + 0 = 1 st 1 st T 2 nd 1 st T M
360 340 357 359 3eqtrd φ F M 1 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M
361 326 fveq1d φ F M 2 nd 1 st T M = 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M
362 fzss2 N M 1 M 1 N
363 93 362 syl φ 1 M 1 N
364 elfz1end M M 1 M
365 61 364 sylib φ M 1 M
366 fnfvima 2 nd 1 st T Fn 1 N 1 M 1 N M 1 M 2 nd 1 st T M 2 nd 1 st T 1 M
367 119 363 365 366 syl3anc φ 2 nd 1 st T M 2 nd 1 st T 1 M
368 fvun1 2 nd 1 st T 1 M × 1 Fn 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N × 0 Fn 2 nd 1 st T M + 1 N 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 2 nd 1 st T M 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 2 nd 1 st T 1 M × 1 2 nd 1 st T M
369 204 133 368 mp3an12 2 nd 1 st T 1 M 2 nd 1 st T M + 1 N = 2 nd 1 st T M 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 2 nd 1 st T 1 M × 1 2 nd 1 st T M
370 212 367 369 syl2anc φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 2 nd 1 st T 1 M × 1 2 nd 1 st T M
371 48 fvconst2 2 nd 1 st T M 2 nd 1 st T 1 M 2 nd 1 st T 1 M × 1 2 nd 1 st T M = 1
372 367 371 syl φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M = 1
373 370 372 eqtrd φ 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 1
374 373 adantr φ 2 nd 1 st T M 1 N 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 1
375 46 220 341 341 112 342 374 ofval φ 2 nd 1 st T M 1 N 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M + 1
376 42 375 mpdan φ 1 st 1 st T + f 2 nd 1 st T 1 M × 1 2 nd 1 st T M + 1 N × 0 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M + 1
377 361 376 eqtrd φ F M 2 nd 1 st T M = 1 st 1 st T 2 nd 1 st T M + 1
378 339 360 377 3netr4d φ F M 1 2 nd 1 st T M F M 2 nd 1 st T M
379 fveq2 n = 2 nd 1 st T M F M 1 n = F M 1 2 nd 1 st T M
380 fveq2 n = 2 nd 1 st T M F M n = F M 2 nd 1 st T M
381 379 380 neeq12d n = 2 nd 1 st T M F M 1 n F M n F M 1 2 nd 1 st T M F M 2 nd 1 st T M
382 378 381 syl5ibrcom φ n = 2 nd 1 st T M F M 1 n F M n
383 382 adantr φ n 1 N n = 2 nd 1 st T M F M 1 n F M n
384 331 383 impbid φ n 1 N F M 1 n F M n n = 2 nd 1 st T M
385 42 384 riota5 φ ι n 1 N | F M 1 n F M n = 2 nd 1 st T M