Metamath Proof Explorer


Theorem pointpsubN

Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointpsub.p P = Points K
pointpsub.s S = PSubSp K
Assertion pointpsubN K AtLat X P X S

Proof

Step Hyp Ref Expression
1 pointpsub.p P = Points K
2 pointpsub.s S = PSubSp K
3 eqid Atoms K = Atoms K
4 3 1 ispointN K AtLat X P q Atoms K X = q
5 3 2 snatpsubN K AtLat q Atoms K q S
6 5 ex K AtLat q Atoms K q S
7 eleq1a q S X = q X S
8 6 7 syl6 K AtLat q Atoms K X = q X S
9 8 rexlimdv K AtLat q Atoms K X = q X S
10 4 9 sylbid K AtLat X P X S
11 10 imp K AtLat X P X S