Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
poirr
Next ⟩
potr
Metamath Proof Explorer
Ascii
Unicode
Theorem
poirr
Description:
A partial order is irreflexive.
(Contributed by
NM
, 27-Mar-1997)
Ref
Expression
Assertion
poirr
⊢
R
Po
A
∧
B
∈
A
→
¬
B
R
B
Proof
Step
Hyp
Ref
Expression
1
df-3an
⊢
B
∈
A
∧
B
∈
A
∧
B
∈
A
↔
B
∈
A
∧
B
∈
A
∧
B
∈
A
2
anabs1
⊢
B
∈
A
∧
B
∈
A
∧
B
∈
A
↔
B
∈
A
∧
B
∈
A
3
anidm
⊢
B
∈
A
∧
B
∈
A
↔
B
∈
A
4
1
2
3
3bitrri
⊢
B
∈
A
↔
B
∈
A
∧
B
∈
A
∧
B
∈
A
5
pocl
⊢
R
Po
A
→
B
∈
A
∧
B
∈
A
∧
B
∈
A
→
¬
B
R
B
∧
B
R
B
∧
B
R
B
→
B
R
B
6
5
imp
⊢
R
Po
A
∧
B
∈
A
∧
B
∈
A
∧
B
∈
A
→
¬
B
R
B
∧
B
R
B
∧
B
R
B
→
B
R
B
7
6
simpld
⊢
R
Po
A
∧
B
∈
A
∧
B
∈
A
∧
B
∈
A
→
¬
B
R
B
8
4
7
sylan2b
⊢
R
Po
A
∧
B
∈
A
→
¬
B
R
B