Step |
Hyp |
Ref |
Expression |
1 |
|
paddun.a |
|
2 |
|
paddun.p |
|
3 |
|
paddun.o |
|
4 |
1 2 3
|
paddunN |
|
5 |
|
simp1 |
|
6 |
|
unss |
|
7 |
6
|
biimpi |
|
8 |
7
|
3adant1 |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
9 10 1 11 3
|
polval2N |
|
13 |
5 8 12
|
syl2anc |
|
14 |
|
hlop |
|
15 |
14
|
3ad2ant1 |
|
16 |
|
hlclat |
|
17 |
16
|
3ad2ant1 |
|
18 |
|
simp2 |
|
19 |
|
eqid |
|
20 |
19 1
|
atssbase |
|
21 |
18 20
|
sstrdi |
|
22 |
19 9
|
clatlubcl |
|
23 |
17 21 22
|
syl2anc |
|
24 |
19 10
|
opoccl |
|
25 |
15 23 24
|
syl2anc |
|
26 |
|
simp3 |
|
27 |
26 20
|
sstrdi |
|
28 |
19 9
|
clatlubcl |
|
29 |
17 27 28
|
syl2anc |
|
30 |
19 10
|
opoccl |
|
31 |
15 29 30
|
syl2anc |
|
32 |
|
eqid |
|
33 |
19 32 1 11
|
pmapmeet |
|
34 |
5 25 31 33
|
syl3anc |
|
35 |
|
eqid |
|
36 |
19 35 9
|
lubun |
|
37 |
17 21 27 36
|
syl3anc |
|
38 |
37
|
fveq2d |
|
39 |
|
hlol |
|
40 |
39
|
3ad2ant1 |
|
41 |
19 35 32 10
|
oldmj1 |
|
42 |
40 23 29 41
|
syl3anc |
|
43 |
38 42
|
eqtrd |
|
44 |
43
|
fveq2d |
|
45 |
9 10 1 11 3
|
polval2N |
|
46 |
45
|
3adant3 |
|
47 |
9 10 1 11 3
|
polval2N |
|
48 |
47
|
3adant2 |
|
49 |
46 48
|
ineq12d |
|
50 |
34 44 49
|
3eqtr4d |
|
51 |
4 13 50
|
3eqtrd |
|