Metamath Proof Explorer


Theorem polid

Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion polid A B A ih B = norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4

Proof

Step Hyp Ref Expression
1 oveq1 A = if A A 0 A ih B = if A A 0 ih B
2 fvoveq1 A = if A A 0 norm A + B = norm if A A 0 + B
3 2 oveq1d A = if A A 0 norm A + B 2 = norm if A A 0 + B 2
4 fvoveq1 A = if A A 0 norm A - B = norm if A A 0 - B
5 4 oveq1d A = if A A 0 norm A - B 2 = norm if A A 0 - B 2
6 3 5 oveq12d A = if A A 0 norm A + B 2 norm A - B 2 = norm if A A 0 + B 2 norm if A A 0 - B 2
7 fvoveq1 A = if A A 0 norm A + i B = norm if A A 0 + i B
8 7 oveq1d A = if A A 0 norm A + i B 2 = norm if A A 0 + i B 2
9 fvoveq1 A = if A A 0 norm A - i B = norm if A A 0 - i B
10 9 oveq1d A = if A A 0 norm A - i B 2 = norm if A A 0 - i B 2
11 8 10 oveq12d A = if A A 0 norm A + i B 2 norm A - i B 2 = norm if A A 0 + i B 2 norm if A A 0 - i B 2
12 11 oveq2d A = if A A 0 i norm A + i B 2 norm A - i B 2 = i norm if A A 0 + i B 2 norm if A A 0 - i B 2
13 6 12 oveq12d A = if A A 0 norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 = norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2
14 13 oveq1d A = if A A 0 norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4 = norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2 4
15 1 14 eqeq12d A = if A A 0 A ih B = norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4 if A A 0 ih B = norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2 4
16 oveq2 B = if B B 0 if A A 0 ih B = if A A 0 ih if B B 0
17 oveq2 B = if B B 0 if A A 0 + B = if A A 0 + if B B 0
18 17 fveq2d B = if B B 0 norm if A A 0 + B = norm if A A 0 + if B B 0
19 18 oveq1d B = if B B 0 norm if A A 0 + B 2 = norm if A A 0 + if B B 0 2
20 oveq2 B = if B B 0 if A A 0 - B = if A A 0 - if B B 0
21 20 fveq2d B = if B B 0 norm if A A 0 - B = norm if A A 0 - if B B 0
22 21 oveq1d B = if B B 0 norm if A A 0 - B 2 = norm if A A 0 - if B B 0 2
23 19 22 oveq12d B = if B B 0 norm if A A 0 + B 2 norm if A A 0 - B 2 = norm if A A 0 + if B B 0 2 norm if A A 0 - if B B 0 2
24 oveq2 B = if B B 0 i B = i if B B 0
25 24 oveq2d B = if B B 0 if A A 0 + i B = if A A 0 + i if B B 0
26 25 fveq2d B = if B B 0 norm if A A 0 + i B = norm if A A 0 + i if B B 0
27 26 oveq1d B = if B B 0 norm if A A 0 + i B 2 = norm if A A 0 + i if B B 0 2
28 24 oveq2d B = if B B 0 if A A 0 - i B = if A A 0 - i if B B 0
29 28 fveq2d B = if B B 0 norm if A A 0 - i B = norm if A A 0 - i if B B 0
30 29 oveq1d B = if B B 0 norm if A A 0 - i B 2 = norm if A A 0 - i if B B 0 2
31 27 30 oveq12d B = if B B 0 norm if A A 0 + i B 2 norm if A A 0 - i B 2 = norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2
32 31 oveq2d B = if B B 0 i norm if A A 0 + i B 2 norm if A A 0 - i B 2 = i norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2
33 23 32 oveq12d B = if B B 0 norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2 = norm if A A 0 + if B B 0 2 - norm if A A 0 - if B B 0 2 + i norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2
34 33 oveq1d B = if B B 0 norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2 4 = norm if A A 0 + if B B 0 2 - norm if A A 0 - if B B 0 2 + i norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2 4
35 16 34 eqeq12d B = if B B 0 if A A 0 ih B = norm if A A 0 + B 2 - norm if A A 0 - B 2 + i norm if A A 0 + i B 2 norm if A A 0 - i B 2 4 if A A 0 ih if B B 0 = norm if A A 0 + if B B 0 2 - norm if A A 0 - if B B 0 2 + i norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2 4
36 ifhvhv0 if A A 0
37 ifhvhv0 if B B 0
38 36 37 polidi if A A 0 ih if B B 0 = norm if A A 0 + if B B 0 2 - norm if A A 0 - if B B 0 2 + i norm if A A 0 + i if B B 0 2 norm if A A 0 - i if B B 0 2 4
39 15 35 38 dedth2h A B A ih B = norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4