Metamath Proof Explorer


Theorem polid2i

Description: Generalized polarization identity. Generalization of Exercise 4(a) of ReedSimon p. 63. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses polid2.1 A
polid2.2 B
polid2.3 C
polid2.4 D
Assertion polid2i A ih B = A + C ih D + B - A - C ih D - B + i A + i C ih D + i B A - i C ih D - i B 4

Proof

Step Hyp Ref Expression
1 polid2.1 A
2 polid2.2 B
3 polid2.3 C
4 polid2.4 D
5 4cn 4
6 1 2 hicli A ih B
7 4ne0 4 0
8 2cn 2
9 3 4 hicli C ih D
10 6 9 addcli A ih B + C ih D
11 6 9 subcli A ih B C ih D
12 8 10 11 adddii 2 A ih B + C ih D + A ih B C ih D = 2 A ih B + C ih D + 2 A ih B C ih D
13 ppncan A ih B C ih D A ih B A ih B + C ih D + A ih B C ih D = A ih B + A ih B
14 6 9 6 13 mp3an A ih B + C ih D + A ih B C ih D = A ih B + A ih B
15 6 2timesi 2 A ih B = A ih B + A ih B
16 14 15 eqtr4i A ih B + C ih D + A ih B C ih D = 2 A ih B
17 16 oveq2i 2 A ih B + C ih D + A ih B C ih D = 2 2 A ih B
18 8 8 6 mulassi 2 2 A ih B = 2 2 A ih B
19 2t2e4 2 2 = 4
20 19 oveq1i 2 2 A ih B = 4 A ih B
21 17 18 20 3eqtr2ri 4 A ih B = 2 A ih B + C ih D + A ih B C ih D
22 1 4 hicli A ih D
23 3 2 hicli C ih B
24 22 23 addcli A ih D + C ih B
25 24 10 10 pnncani A ih D + C ih B + A ih B + C ih D - A ih D + C ih B - A ih B + C ih D = A ih B + C ih D + A ih B + C ih D
26 1 3 4 2 normlem8 A + C ih D + B = A ih D + C ih B + A ih B + C ih D
27 1 3 4 2 normlem9 A - C ih D - B = A ih D + C ih B - A ih B + C ih D
28 26 27 oveq12i A + C ih D + B A - C ih D - B = A ih D + C ih B + A ih B + C ih D - A ih D + C ih B - A ih B + C ih D
29 10 2timesi 2 A ih B + C ih D = A ih B + C ih D + A ih B + C ih D
30 25 28 29 3eqtr4i A + C ih D + B A - C ih D - B = 2 A ih B + C ih D
31 ax-icn i
32 31 3 hvmulcli i C
33 31 2 hvmulcli i B
34 1 32 4 33 normlem8 A + i C ih D + i B = A ih D + i C ih i B + A ih i B + i C ih D
35 1 32 4 33 normlem9 A - i C ih D - i B = A ih D + i C ih i B - A ih i B + i C ih D
36 34 35 oveq12i A + i C ih D + i B A - i C ih D - i B = A ih D + i C ih i B + A ih i B + i C ih D - A ih D + i C ih i B - A ih i B + i C ih D
37 32 33 hicli i C ih i B
38 22 37 addcli A ih D + i C ih i B
39 1 33 hicli A ih i B
40 32 4 hicli i C ih D
41 39 40 addcli A ih i B + i C ih D
42 38 41 41 pnncani A ih D + i C ih i B + A ih i B + i C ih D - A ih D + i C ih i B - A ih i B + i C ih D = A ih i B + i C ih D + A ih i B + i C ih D
43 41 2timesi 2 A ih i B + i C ih D = A ih i B + i C ih D + A ih i B + i C ih D
44 his5 i A B A ih i B = i A ih B
45 31 1 2 44 mp3an A ih i B = i A ih B
46 cji i = i
47 46 oveq1i i A ih B = i A ih B
48 45 47 eqtri A ih i B = i A ih B
49 ax-his3 i C D i C ih D = i C ih D
50 31 3 4 49 mp3an i C ih D = i C ih D
51 48 50 oveq12i A ih i B + i C ih D = i A ih B + i C ih D
52 51 oveq2i 2 A ih i B + i C ih D = 2 i A ih B + i C ih D
53 43 52 eqtr3i A ih i B + i C ih D + A ih i B + i C ih D = 2 i A ih B + i C ih D
54 36 42 53 3eqtri A + i C ih D + i B A - i C ih D - i B = 2 i A ih B + i C ih D
55 54 oveq2i i A + i C ih D + i B A - i C ih D - i B = i 2 i A ih B + i C ih D
56 negicn i
57 56 6 mulcli i A ih B
58 31 9 mulcli i C ih D
59 57 58 addcli i A ih B + i C ih D
60 8 31 59 mul12i 2 i i A ih B + i C ih D = i 2 i A ih B + i C ih D
61 31 57 58 adddii i i A ih B + i C ih D = i i A ih B + i i C ih D
62 31 31 mulneg2i i i = i i
63 ixi i i = 1
64 63 negeqi i i = -1
65 negneg1e1 -1 = 1
66 62 64 65 3eqtri i i = 1
67 66 oveq1i i i A ih B = 1 A ih B
68 31 56 6 mulassi i i A ih B = i i A ih B
69 6 mulid2i 1 A ih B = A ih B
70 67 68 69 3eqtr3i i i A ih B = A ih B
71 63 oveq1i i i C ih D = -1 C ih D
72 31 31 9 mulassi i i C ih D = i i C ih D
73 9 mulm1i -1 C ih D = C ih D
74 71 72 73 3eqtr3i i i C ih D = C ih D
75 70 74 oveq12i i i A ih B + i i C ih D = A ih B + C ih D
76 6 9 negsubi A ih B + C ih D = A ih B C ih D
77 61 75 76 3eqtri i i A ih B + i C ih D = A ih B C ih D
78 77 oveq2i 2 i i A ih B + i C ih D = 2 A ih B C ih D
79 55 60 78 3eqtr2i i A + i C ih D + i B A - i C ih D - i B = 2 A ih B C ih D
80 30 79 oveq12i A + C ih D + B - A - C ih D - B + i A + i C ih D + i B A - i C ih D - i B = 2 A ih B + C ih D + 2 A ih B C ih D
81 12 21 80 3eqtr4i 4 A ih B = A + C ih D + B - A - C ih D - B + i A + i C ih D + i B A - i C ih D - i B
82 5 6 7 81 mvllmuli A ih B = A + C ih D + B - A - C ih D - B + i A + i C ih D + i B A - i C ih D - i B 4