Metamath Proof Explorer


Theorem polidi

Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses polid.1 A
polid.2 B
Assertion polidi A ih B = norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4

Proof

Step Hyp Ref Expression
1 polid.1 A
2 polid.2 B
3 1 2 2 1 polid2i A ih B = A + B ih A + B - A - B ih A - B + i A + i B ih A + i B A - i B ih A - i B 4
4 1 2 hvaddcli A + B
5 4 normsqi norm A + B 2 = A + B ih A + B
6 1 2 hvsubcli A - B
7 6 normsqi norm A - B 2 = A - B ih A - B
8 5 7 oveq12i norm A + B 2 norm A - B 2 = A + B ih A + B A - B ih A - B
9 ax-icn i
10 9 2 hvmulcli i B
11 1 10 hvaddcli A + i B
12 11 normsqi norm A + i B 2 = A + i B ih A + i B
13 1 10 hvsubcli A - i B
14 13 normsqi norm A - i B 2 = A - i B ih A - i B
15 12 14 oveq12i norm A + i B 2 norm A - i B 2 = A + i B ih A + i B A - i B ih A - i B
16 15 oveq2i i norm A + i B 2 norm A - i B 2 = i A + i B ih A + i B A - i B ih A - i B
17 8 16 oveq12i norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 = A + B ih A + B - A - B ih A - B + i A + i B ih A + i B A - i B ih A - i B
18 17 oveq1i norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4 = A + B ih A + B - A - B ih A - B + i A + i B ih A + i B A - i B ih A - i B 4
19 3 18 eqtr4i A ih B = norm A + B 2 - norm A - B 2 + i norm A + i B 2 norm A - i B 2 4