Metamath Proof Explorer


Theorem polpmapN

Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polpmap.b B = Base K
polpmap.o ˙ = oc K
polpmap.m M = pmap K
polpmap.p P = 𝑃 K
Assertion polpmapN K HL X B P M X = M ˙ X

Proof

Step Hyp Ref Expression
1 polpmap.b B = Base K
2 polpmap.o ˙ = oc K
3 polpmap.m M = pmap K
4 polpmap.p P = 𝑃 K
5 eqid Atoms K = Atoms K
6 1 5 3 pmapssat K HL X B M X Atoms K
7 eqid lub K = lub K
8 7 2 5 3 4 polval2N K HL M X Atoms K P M X = M ˙ lub K M X
9 6 8 syldan K HL X B P M X = M ˙ lub K M X
10 eqid K = K
11 1 10 5 3 pmapval K HL X B M X = p Atoms K | p K X
12 11 fveq2d K HL X B lub K M X = lub K p Atoms K | p K X
13 hlomcmat K HL K OML K CLat K AtLat
14 1 10 7 5 atlatmstc K OML K CLat K AtLat X B lub K p Atoms K | p K X = X
15 13 14 sylan K HL X B lub K p Atoms K | p K X = X
16 12 15 eqtrd K HL X B lub K M X = X
17 16 fveq2d K HL X B ˙ lub K M X = ˙ X
18 17 fveq2d K HL X B M ˙ lub K M X = M ˙ X
19 9 18 eqtrd K HL X B P M X = M ˙ X