Metamath Proof Explorer


Theorem polssatN

Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a A = Atoms K
polssat.p ˙ = 𝑃 K
Assertion polssatN K HL X A ˙ X A

Proof

Step Hyp Ref Expression
1 polssat.a A = Atoms K
2 polssat.p ˙ = 𝑃 K
3 eqid PSubSp K = PSubSp K
4 1 3 2 polsubN K HL X A ˙ X PSubSp K
5 1 3 psubssat K HL ˙ X PSubSp K ˙ X A
6 4 5 syldan K HL X A ˙ X A