Metamath Proof Explorer


Theorem polsubN

Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polsubsp.a A = Atoms K
polsubsp.s S = PSubSp K
polsubsp.p ˙ = 𝑃 K
Assertion polsubN K HL X A ˙ X S

Proof

Step Hyp Ref Expression
1 polsubsp.a A = Atoms K
2 polsubsp.s S = PSubSp K
3 polsubsp.p ˙ = 𝑃 K
4 eqid lub K = lub K
5 eqid oc K = oc K
6 eqid pmap K = pmap K
7 4 5 1 6 3 polval2N K HL X A ˙ X = pmap K oc K lub K X
8 hllat K HL K Lat
9 8 adantr K HL X A K Lat
10 hlop K HL K OP
11 10 adantr K HL X A K OP
12 hlclat K HL K CLat
13 eqid Base K = Base K
14 13 1 atssbase A Base K
15 sstr X A A Base K X Base K
16 14 15 mpan2 X A X Base K
17 13 4 clatlubcl K CLat X Base K lub K X Base K
18 12 16 17 syl2an K HL X A lub K X Base K
19 13 5 opoccl K OP lub K X Base K oc K lub K X Base K
20 11 18 19 syl2anc K HL X A oc K lub K X Base K
21 13 2 6 pmapsub K Lat oc K lub K X Base K pmap K oc K lub K X S
22 9 20 21 syl2anc K HL X A pmap K oc K lub K X S
23 7 22 eqeltrd K HL X A ˙ X S