Metamath Proof Explorer


Theorem polsubclN

Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polsubcl.a A=AtomsK
polsubcl.p ˙=𝑃K
polsubcl.c C=PSubClK
Assertion polsubclN KHLXA˙XC

Proof

Step Hyp Ref Expression
1 polsubcl.a A=AtomsK
2 polsubcl.p ˙=𝑃K
3 polsubcl.c C=PSubClK
4 eqid lubK=lubK
5 eqid ocK=ocK
6 eqid pmapK=pmapK
7 4 5 1 6 2 polval2N KHLXA˙X=pmapKocKlubKX
8 hlop KHLKOP
9 8 adantr KHLXAKOP
10 hlclat KHLKCLat
11 eqid BaseK=BaseK
12 11 1 atssbase ABaseK
13 sstr XAABaseKXBaseK
14 12 13 mpan2 XAXBaseK
15 11 4 clatlubcl KCLatXBaseKlubKXBaseK
16 10 14 15 syl2an KHLXAlubKXBaseK
17 11 5 opoccl KOPlubKXBaseKocKlubKXBaseK
18 9 16 17 syl2anc KHLXAocKlubKXBaseK
19 11 6 3 pmapsubclN KHLocKlubKXBaseKpmapKocKlubKXC
20 18 19 syldan KHLXApmapKocKlubKXC
21 7 20 eqeltrd KHLXA˙XC