Metamath Proof Explorer


Theorem poltletr

Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion poltletr R Po X A X B X C X A R B B R I C A R C

Proof

Step Hyp Ref Expression
1 poleloe C X B R I C B R C B = C
2 1 3ad2ant3 A X B X C X B R I C B R C B = C
3 2 adantl R Po X A X B X C X B R I C B R C B = C
4 3 anbi2d R Po X A X B X C X A R B B R I C A R B B R C B = C
5 potr R Po X A X B X C X A R B B R C A R C
6 5 com12 A R B B R C R Po X A X B X C X A R C
7 breq2 B = C A R B A R C
8 7 biimpac A R B B = C A R C
9 8 a1d A R B B = C R Po X A X B X C X A R C
10 6 9 jaodan A R B B R C B = C R Po X A X B X C X A R C
11 10 com12 R Po X A X B X C X A R B B R C B = C A R C
12 4 11 sylbid R Po X A X B X C X A R B B R I C A R C