Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
poltletr
Next ⟩
somin1
Metamath Proof Explorer
Ascii
Unicode
Theorem
poltletr
Description:
Transitive law for general strict orders.
(Contributed by
Stefan O'Rear
, 17-Jan-2015)
Ref
Expression
Assertion
poltletr
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
B
∧
B
R
∪
I
C
→
A
R
C
Proof
Step
Hyp
Ref
Expression
1
poleloe
⊢
C
∈
X
→
B
R
∪
I
C
↔
B
R
C
∨
B
=
C
2
1
3ad2ant3
⊢
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
B
R
∪
I
C
↔
B
R
C
∨
B
=
C
3
2
adantl
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
B
R
∪
I
C
↔
B
R
C
∨
B
=
C
4
3
anbi2d
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
B
∧
B
R
∪
I
C
↔
A
R
B
∧
B
R
C
∨
B
=
C
5
potr
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
B
∧
B
R
C
→
A
R
C
6
5
com12
⊢
A
R
B
∧
B
R
C
→
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
C
7
breq2
⊢
B
=
C
→
A
R
B
↔
A
R
C
8
7
biimpac
⊢
A
R
B
∧
B
=
C
→
A
R
C
9
8
a1d
⊢
A
R
B
∧
B
=
C
→
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
C
10
6
9
jaodan
⊢
A
R
B
∧
B
R
C
∨
B
=
C
→
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
C
11
10
com12
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
B
∧
B
R
C
∨
B
=
C
→
A
R
C
12
4
11
sylbid
⊢
R
Po
X
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
R
B
∧
B
R
∪
I
C
→
A
R
C