Metamath Proof Explorer


Theorem polval2N

Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in Holland95 p. 223. (Contributed by NM, 22-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polval2.u U = lub K
polval2.o ˙ = oc K
polval2.a A = Atoms K
polval2.m M = pmap K
polval2.p P = 𝑃 K
Assertion polval2N K HL X A P X = M ˙ U X

Proof

Step Hyp Ref Expression
1 polval2.u U = lub K
2 polval2.o ˙ = oc K
3 polval2.a A = Atoms K
4 polval2.m M = pmap K
5 polval2.p P = 𝑃 K
6 2 3 4 5 polvalN K HL X A P X = A p X M ˙ p
7 hlop K HL K OP
8 7 ad2antrr K HL X A p X K OP
9 ssel2 X A p X p A
10 9 adantll K HL X A p X p A
11 eqid Base K = Base K
12 11 3 atbase p A p Base K
13 10 12 syl K HL X A p X p Base K
14 11 2 opoccl K OP p Base K ˙ p Base K
15 8 13 14 syl2anc K HL X A p X ˙ p Base K
16 15 ralrimiva K HL X A p X ˙ p Base K
17 eqid glb K = glb K
18 11 17 3 4 pmapglb2xN K HL p X ˙ p Base K M glb K x | p X x = ˙ p = A p X M ˙ p
19 16 18 syldan K HL X A M glb K x | p X x = ˙ p = A p X M ˙ p
20 11 1 17 2 glbconxN K HL p X ˙ p Base K glb K x | p X x = ˙ p = ˙ U x | p X x = ˙ ˙ p
21 16 20 syldan K HL X A glb K x | p X x = ˙ p = ˙ U x | p X x = ˙ ˙ p
22 11 2 opococ K OP p Base K ˙ ˙ p = p
23 8 13 22 syl2anc K HL X A p X ˙ ˙ p = p
24 23 eqeq2d K HL X A p X x = ˙ ˙ p x = p
25 24 rexbidva K HL X A p X x = ˙ ˙ p p X x = p
26 25 abbidv K HL X A x | p X x = ˙ ˙ p = x | p X x = p
27 df-rex p X x = p p p X x = p
28 equcom x = p p = x
29 28 anbi1ci p X x = p p = x p X
30 29 exbii p p X x = p p p = x p X
31 eleq1w p = x p X x X
32 31 equsexvw p p = x p X x X
33 27 30 32 3bitri p X x = p x X
34 33 abbii x | p X x = p = x | x X
35 abid2 x | x X = X
36 34 35 eqtri x | p X x = p = X
37 26 36 eqtrdi K HL X A x | p X x = ˙ ˙ p = X
38 37 fveq2d K HL X A U x | p X x = ˙ ˙ p = U X
39 38 fveq2d K HL X A ˙ U x | p X x = ˙ ˙ p = ˙ U X
40 21 39 eqtrd K HL X A glb K x | p X x = ˙ p = ˙ U X
41 40 fveq2d K HL X A M glb K x | p X x = ˙ p = M ˙ U X
42 6 19 41 3eqtr2d K HL X A P X = M ˙ U X