| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poml4.a |
|
| 2 |
|
poml4.p |
|
| 3 |
|
eqcom |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 1 5 2
|
2polvalN |
|
| 7 |
6
|
3adant2 |
|
| 8 |
7
|
eqeq2d |
|
| 9 |
8
|
biimpd |
|
| 10 |
3 9
|
biimtrid |
|
| 11 |
|
simpl1 |
|
| 12 |
|
hloml |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
hlclat |
|
| 15 |
11 14
|
syl |
|
| 16 |
|
simpl2 |
|
| 17 |
|
eqid |
|
| 18 |
17 1
|
atssbase |
|
| 19 |
16 18
|
sstrdi |
|
| 20 |
17 4
|
clatlubcl |
|
| 21 |
15 19 20
|
syl2anc |
|
| 22 |
|
simpl3 |
|
| 23 |
22 18
|
sstrdi |
|
| 24 |
17 4
|
clatlubcl |
|
| 25 |
15 23 24
|
syl2anc |
|
| 26 |
13 21 25
|
3jca |
|
| 27 |
|
simprl |
|
| 28 |
|
eqid |
|
| 29 |
17 28 4
|
lubss |
|
| 30 |
15 23 27 29
|
syl3anc |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
17 28 31 32
|
omllaw4 |
|
| 34 |
26 30 33
|
sylc |
|
| 35 |
34
|
fveq2d |
|
| 36 |
4 32 1 5 2
|
polval2N |
|
| 37 |
11 16 36
|
syl2anc |
|
| 38 |
|
simprr |
|
| 39 |
37 38
|
ineq12d |
|
| 40 |
|
hlop |
|
| 41 |
11 40
|
syl |
|
| 42 |
17 32
|
opoccl |
|
| 43 |
41 21 42
|
syl2anc |
|
| 44 |
17 31 1 5
|
pmapmeet |
|
| 45 |
11 43 25 44
|
syl3anc |
|
| 46 |
39 45
|
eqtr4d |
|
| 47 |
46
|
fveq2d |
|
| 48 |
11
|
hllatd |
|
| 49 |
17 31
|
latmcl |
|
| 50 |
48 43 25 49
|
syl3anc |
|
| 51 |
17 32 5 2
|
polpmapN |
|
| 52 |
11 50 51
|
syl2anc |
|
| 53 |
47 52
|
eqtrd |
|
| 54 |
53 38
|
ineq12d |
|
| 55 |
17 32
|
opoccl |
|
| 56 |
41 50 55
|
syl2anc |
|
| 57 |
17 31 1 5
|
pmapmeet |
|
| 58 |
11 56 25 57
|
syl3anc |
|
| 59 |
54 58
|
eqtr4d |
|
| 60 |
4 1 5 2
|
2polvalN |
|
| 61 |
11 16 60
|
syl2anc |
|
| 62 |
35 59 61
|
3eqtr4d |
|
| 63 |
62
|
ex |
|
| 64 |
10 63
|
sylan2d |
|