Metamath Proof Explorer


Theorem porpss

Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion porpss [⊂] Po A

Proof

Step Hyp Ref Expression
1 pssirr ¬ x x
2 psstr x y y z x z
3 vex x V
4 3 brrpss x [⊂] x x x
5 4 notbii ¬ x [⊂] x ¬ x x
6 vex y V
7 6 brrpss x [⊂] y x y
8 vex z V
9 8 brrpss y [⊂] z y z
10 7 9 anbi12i x [⊂] y y [⊂] z x y y z
11 8 brrpss x [⊂] z x z
12 10 11 imbi12i x [⊂] y y [⊂] z x [⊂] z x y y z x z
13 5 12 anbi12i ¬ x [⊂] x x [⊂] y y [⊂] z x [⊂] z ¬ x x x y y z x z
14 1 2 13 mpbir2an ¬ x [⊂] x x [⊂] y y [⊂] z x [⊂] z
15 14 rgenw z A ¬ x [⊂] x x [⊂] y y [⊂] z x [⊂] z
16 15 rgen2w x A y A z A ¬ x [⊂] x x [⊂] y y [⊂] z x [⊂] z
17 df-po [⊂] Po A x A y A z A ¬ x [⊂] x x [⊂] y y [⊂] z x [⊂] z
18 16 17 mpbir [⊂] Po A