Metamath Proof Explorer


Theorem posdif

Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion posdif A B A < B 0 < B A

Proof

Step Hyp Ref Expression
1 resubcl B A B A
2 1 ancoms A B B A
3 simpl A B A
4 ltaddpos B A A 0 < B A A < A + B - A
5 2 3 4 syl2anc A B 0 < B A A < A + B - A
6 recn A A
7 recn B B
8 pncan3 A B A + B - A = B
9 6 7 8 syl2an A B A + B - A = B
10 9 breq2d A B A < A + B - A A < B
11 5 10 bitr2d A B A < B 0 < B A