Metamath Proof Explorer


Theorem posdifi

Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 19-Aug-2001)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
Assertion posdifi A < B 0 < B A

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 posdif A B A < B 0 < B A
4 1 2 3 mp2an A < B 0 < B A