Metamath Proof Explorer


Theorem posjidm

Description: Poset join is idempotent. latjidm could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses posjidm.b B = Base K
posjidm.j ˙ = join K
Assertion posjidm K Poset X B X ˙ X = X

Proof

Step Hyp Ref Expression
1 posjidm.b B = Base K
2 posjidm.j ˙ = join K
3 eqid lub K = lub K
4 simpl K Poset X B K Poset
5 simpr K Poset X B X B
6 3 2 4 5 5 joinval K Poset X B X ˙ X = lub K X X
7 eqid K = K
8 1 7 posref K Poset X B X K X
9 eqidd K Poset X B X X = X X
10 4 1 5 5 7 8 9 3 lubpr K Poset X B lub K X X = X
11 6 10 eqtrd K Poset X B X ˙ X = X