Metamath Proof Explorer


Theorem posmidm

Description: Poset meet is idempotent. latmidm could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses posjidm.b B = Base K
posmidm.m ˙ = meet K
Assertion posmidm K Poset X B X ˙ X = X

Proof

Step Hyp Ref Expression
1 posjidm.b B = Base K
2 posmidm.m ˙ = meet K
3 eqid glb K = glb K
4 simpl K Poset X B K Poset
5 simpr K Poset X B X B
6 3 2 4 5 5 meetval K Poset X B X ˙ X = glb K X X
7 eqid K = K
8 1 7 posref K Poset X B X K X
9 eqidd K Poset X B X X = X X
10 4 1 5 5 7 8 9 3 glbpr K Poset X B glb K X X = X
11 6 10 eqtrd K Poset X B X ˙ X = X