Step |
Hyp |
Ref |
Expression |
1 |
|
pospo.b |
|
2 |
|
pospo.l |
|
3 |
|
pospo.s |
|
4 |
3
|
pltirr |
|
5 |
1 3
|
plttr |
|
6 |
4 5
|
ispod |
|
7 |
|
relres |
|
8 |
7
|
a1i |
|
9 |
|
opabresid |
|
10 |
9
|
eqcomi |
|
11 |
10
|
eleq2i |
|
12 |
|
opabidw |
|
13 |
11 12
|
bitr3i |
|
14 |
1 2
|
posref |
|
15 |
|
df-br |
|
16 |
|
breq2 |
|
17 |
15 16
|
bitr3id |
|
18 |
14 17
|
syl5ibrcom |
|
19 |
18
|
expimpd |
|
20 |
13 19
|
syl5bi |
|
21 |
8 20
|
relssdv |
|
22 |
6 21
|
jca |
|
23 |
|
simpl |
|
24 |
1
|
a1i |
|
25 |
2
|
a1i |
|
26 |
|
equid |
|
27 |
|
simpr |
|
28 |
|
resieq |
|
29 |
27 27 28
|
syl2anc |
|
30 |
26 29
|
mpbiri |
|
31 |
|
simplrr |
|
32 |
31
|
ssbrd |
|
33 |
30 32
|
mpd |
|
34 |
1 2 3
|
pleval2i |
|
35 |
34
|
3adant1 |
|
36 |
1 2 3
|
pleval2i |
|
37 |
36
|
ancoms |
|
38 |
37
|
3adant1 |
|
39 |
|
simprl |
|
40 |
|
po2nr |
|
41 |
40
|
3impb |
|
42 |
39 41
|
syl3an1 |
|
43 |
42
|
pm2.21d |
|
44 |
|
simpl |
|
45 |
44
|
a1i |
|
46 |
|
simpr |
|
47 |
46
|
equcomd |
|
48 |
47
|
a1i |
|
49 |
|
simpl |
|
50 |
49
|
a1i |
|
51 |
43 45 48 50
|
ccased |
|
52 |
35 38 51
|
syl2and |
|
53 |
|
simpr1 |
|
54 |
|
simpr2 |
|
55 |
53 54 34
|
syl2anc |
|
56 |
|
simpr3 |
|
57 |
1 2 3
|
pleval2i |
|
58 |
54 56 57
|
syl2anc |
|
59 |
|
potr |
|
60 |
39 59
|
sylan |
|
61 |
|
simpll |
|
62 |
2 3
|
pltle |
|
63 |
61 53 56 62
|
syl3anc |
|
64 |
60 63
|
syld |
|
65 |
|
breq1 |
|
66 |
65
|
biimpar |
|
67 |
66 63
|
syl5 |
|
68 |
|
breq2 |
|
69 |
68
|
biimpac |
|
70 |
69 63
|
syl5 |
|
71 |
53 33
|
syldan |
|
72 |
|
eqtr |
|
73 |
72
|
breq2d |
|
74 |
71 73
|
syl5ibcom |
|
75 |
64 67 70 74
|
ccased |
|
76 |
55 58 75
|
syl2and |
|
77 |
23 24 25 33 52 76
|
isposd |
|
78 |
77
|
ex |
|
79 |
22 78
|
impbid2 |
|