Metamath Proof Explorer


Theorem pospropd

Description: Posethood is determined only by structure components and only by the value of the relation within the base set. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses pospropd.kv φ K V
pospropd.lv φ L W
pospropd.kb φ B = Base K
pospropd.lb φ B = Base L
pospropd.xy φ x B y B x K y x L y
Assertion pospropd φ K Poset L Poset

Proof

Step Hyp Ref Expression
1 pospropd.kv φ K V
2 pospropd.lv φ L W
3 pospropd.kb φ B = Base K
4 pospropd.lb φ B = Base L
5 pospropd.xy φ x B y B x K y x L y
6 5 ralrimivva φ x B y B x K y x L y
7 simp1 a B b B c B a B
8 7 7 jca a B b B c B a B a B
9 breq1 x = a x K y a K y
10 breq1 x = a x L y a L y
11 9 10 bibi12d x = a x K y x L y a K y a L y
12 breq2 y = a a K y a K a
13 breq2 y = a a L y a L a
14 12 13 bibi12d y = a a K y a L y a K a a L a
15 11 14 rspc2va a B a B x B y B x K y x L y a K a a L a
16 8 15 sylan a B b B c B x B y B x K y x L y a K a a L a
17 breq2 y = b a K y a K b
18 breq2 y = b a L y a L b
19 17 18 bibi12d y = b a K y a L y a K b a L b
20 11 19 rspc2va a B b B x B y B x K y x L y a K b a L b
21 20 3adantl3 a B b B c B x B y B x K y x L y a K b a L b
22 3simpb b B c B a B b B a B
23 22 3comr a B b B c B b B a B
24 breq1 x = b x K y b K y
25 breq1 x = b x L y b L y
26 24 25 bibi12d x = b x K y x L y b K y b L y
27 breq2 y = a b K y b K a
28 breq2 y = a b L y b L a
29 27 28 bibi12d y = a b K y b L y b K a b L a
30 26 29 rspc2va b B a B x B y B x K y x L y b K a b L a
31 23 30 sylan a B b B c B x B y B x K y x L y b K a b L a
32 21 31 anbi12d a B b B c B x B y B x K y x L y a K b b K a a L b b L a
33 32 imbi1d a B b B c B x B y B x K y x L y a K b b K a a = b a L b b L a a = b
34 breq2 y = c b K y b K c
35 breq2 y = c b L y b L c
36 34 35 bibi12d y = c b K y b L y b K c b L c
37 26 36 rspc2va b B c B x B y B x K y x L y b K c b L c
38 37 3adantl1 a B b B c B x B y B x K y x L y b K c b L c
39 21 38 anbi12d a B b B c B x B y B x K y x L y a K b b K c a L b b L c
40 3simpb a B b B c B a B c B
41 breq2 y = c a K y a K c
42 breq2 y = c a L y a L c
43 41 42 bibi12d y = c a K y a L y a K c a L c
44 11 43 rspc2va a B c B x B y B x K y x L y a K c a L c
45 40 44 sylan a B b B c B x B y B x K y x L y a K c a L c
46 39 45 imbi12d a B b B c B x B y B x K y x L y a K b b K c a K c a L b b L c a L c
47 16 33 46 3anbi123d a B b B c B x B y B x K y x L y a K a a K b b K a a = b a K b b K c a K c a L a a L b b L a a = b a L b b L c a L c
48 6 47 sylan2 a B b B c B φ a K a a K b b K a a = b a K b b K c a K c a L a a L b b L a a = b a L b b L c a L c
49 48 ancoms φ a B b B c B a K a a K b b K a a = b a K b b K c a K c a L a a L b b L a a = b a L b b L c a L c
50 49 3exp2 φ a B b B c B a K a a K b b K a a = b a K b b K c a K c a L a a L b b L a a = b a L b b L c a L c
51 50 imp42 φ a B b B c B a K a a K b b K a a = b a K b b K c a K c a L a a L b b L a a = b a L b b L c a L c
52 51 ralbidva φ a B b B c B a K a a K b b K a a = b a K b b K c a K c c B a L a a L b b L a a = b a L b b L c a L c
53 52 2ralbidva φ a B b B c B a K a a K b b K a a = b a K b b K c a K c a B b B c B a L a a L b b L a a = b a L b b L c a L c
54 raleq B = Base K c B a K a a K b b K a a = b a K b b K c a K c c Base K a K a a K b b K a a = b a K b b K c a K c
55 54 raleqbi1dv B = Base K b B c B a K a a K b b K a a = b a K b b K c a K c b Base K c Base K a K a a K b b K a a = b a K b b K c a K c
56 55 raleqbi1dv B = Base K a B b B c B a K a a K b b K a a = b a K b b K c a K c a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c
57 3 56 syl φ a B b B c B a K a a K b b K a a = b a K b b K c a K c a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c
58 raleq B = Base L c B a L a a L b b L a a = b a L b b L c a L c c Base L a L a a L b b L a a = b a L b b L c a L c
59 58 raleqbi1dv B = Base L b B c B a L a a L b b L a a = b a L b b L c a L c b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
60 59 raleqbi1dv B = Base L a B b B c B a L a a L b b L a a = b a L b b L c a L c a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
61 4 60 syl φ a B b B c B a L a a L b b L a a = b a L b b L c a L c a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
62 53 57 61 3bitr3d φ a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
63 1 elexd φ K V
64 63 biantrurd φ a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c K V a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c
65 2 elexd φ L V
66 65 biantrurd φ a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c L V a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
67 62 64 66 3bitr3d φ K V a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c L V a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
68 eqid Base K = Base K
69 eqid K = K
70 68 69 ispos K Poset K V a Base K b Base K c Base K a K a a K b b K a a = b a K b b K c a K c
71 eqid Base L = Base L
72 eqid L = L
73 71 72 ispos L Poset L V a Base L b Base L c Base L a L a a L b b L a a = b a L b b L c a L c
74 67 70 73 3bitr4g φ K Poset L Poset