Database
BASIC ORDER THEORY
Partially ordered sets (posets)
posprs
Next ⟩
posi
Metamath Proof Explorer
Ascii
Unicode
Theorem
posprs
Description:
A poset is a proset.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Assertion
posprs
⊢
K
∈
Poset
→
K
∈
Proset
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
K
=
Base
K
2
eqid
⊢
≤
K
=
≤
K
3
1
2
ispos2
⊢
K
∈
Poset
↔
K
∈
Proset
∧
∀
x
∈
Base
K
∀
y
∈
Base
K
x
≤
K
y
∧
y
≤
K
x
→
x
=
y
4
3
simplbi
⊢
K
∈
Poset
→
K
∈
Proset