Metamath Proof Explorer


Theorem posref

Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses posi.b B = Base K
posi.l ˙ = K
Assertion posref K Poset X B X ˙ X

Proof

Step Hyp Ref Expression
1 posi.b B = Base K
2 posi.l ˙ = K
3 posprs K Poset K Proset
4 1 2 prsref K Proset X B X ˙ X
5 3 4 sylan K Poset X B X ˙ X