Metamath Proof Explorer
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011)
(Proof shortened by OpenAI, 25-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
posi.b |
|
|
|
posi.l |
|
|
Assertion |
posref |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
posi.b |
|
| 2 |
|
posi.l |
|
| 3 |
|
posprs |
|
| 4 |
1 2
|
prsref |
|
| 5 |
3 4
|
sylan |
|