Metamath Proof Explorer


Theorem possumd

Description: Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses possumd.1 φ A
possumd.2 φ B
Assertion possumd φ 0 < A + B B < A

Proof

Step Hyp Ref Expression
1 possumd.1 φ A
2 possumd.2 φ B
3 2 renegcld φ B
4 3 1 posdifd φ B < A 0 < A B
5 1 recnd φ A
6 2 recnd φ B
7 5 6 subnegd φ A B = A + B
8 7 breq2d φ 0 < A B 0 < A + B
9 4 8 bitr2d φ 0 < A + B B < A