Metamath Proof Explorer


Theorem postr

Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b B = Base K
posi.l ˙ = K
Assertion postr K Poset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z

Proof

Step Hyp Ref Expression
1 posi.b B = Base K
2 posi.l ˙ = K
3 1 2 posi K Poset X B Y B Z B X ˙ X X ˙ Y Y ˙ X X = Y X ˙ Y Y ˙ Z X ˙ Z
4 3 simp3d K Poset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z