Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Partial and total orderings
potr
Next ⟩
po2nr
Metamath Proof Explorer
Ascii
Unicode
Theorem
potr
Description:
A partial order is a transitive relation.
(Contributed by
NM
, 27-Mar-1997)
Ref
Expression
Assertion
potr
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D
Proof
Step
Hyp
Ref
Expression
1
pocl
⊢
R
Po
A
→
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
¬
B
R
B
∧
B
R
C
∧
C
R
D
→
B
R
D
2
1
imp
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
¬
B
R
B
∧
B
R
C
∧
C
R
D
→
B
R
D
3
2
simprd
⊢
R
Po
A
∧
B
∈
A
∧
C
∈
A
∧
D
∈
A
→
B
R
C
∧
C
R
D
→
B
R
D