Metamath Proof Explorer


Theorem potr

Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion potr R Po A B A C A D A B R C C R D B R D

Proof

Step Hyp Ref Expression
1 pocl R Po A B A C A D A ¬ B R B B R C C R D B R D
2 1 imp R Po A B A C A D A ¬ B R B B R C C R D B R D
3 2 simprd R Po A B A C A D A B R C C R D B R D