Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simpr |
|
3 |
2
|
adantr |
|
4 |
|
m1dvdsndvds |
|
5 |
4
|
imp |
|
6 |
|
eqid |
|
7 |
6
|
modprminv |
|
8 |
|
simpr |
|
9 |
8
|
eqcomd |
|
10 |
7 9
|
syl |
|
11 |
1 3 5 10
|
syl3anc |
|
12 |
|
modprm1div |
|
13 |
12
|
biimpar |
|
14 |
13
|
oveq1d |
|
15 |
14
|
oveq1d |
|
16 |
|
zre |
|
17 |
16
|
ad2antlr |
|
18 |
|
prmm2nn0 |
|
19 |
18
|
anim1ci |
|
20 |
19
|
adantr |
|
21 |
|
zexpcl |
|
22 |
20 21
|
syl |
|
23 |
|
prmnn |
|
24 |
23
|
adantr |
|
25 |
24
|
adantr |
|
26 |
22 25
|
zmodcld |
|
27 |
26
|
nn0zd |
|
28 |
23
|
nnrpd |
|
29 |
28
|
adantr |
|
30 |
29
|
adantr |
|
31 |
|
modmulmod |
|
32 |
17 27 30 31
|
syl3anc |
|
33 |
19 21
|
syl |
|
34 |
33 24
|
zmodcld |
|
35 |
34
|
nn0cnd |
|
36 |
35
|
mulid2d |
|
37 |
36
|
oveq1d |
|
38 |
37
|
adantr |
|
39 |
|
reexpcl |
|
40 |
16 18 39
|
syl2anr |
|
41 |
40 29
|
jca |
|
42 |
41
|
adantr |
|
43 |
|
modabs2 |
|
44 |
42 43
|
syl |
|
45 |
38 44
|
eqtrd |
|
46 |
15 32 45
|
3eqtr3d |
|
47 |
11 46
|
eqtr2d |
|
48 |
47
|
ex |
|