| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
simpr |
|
| 3 |
2
|
adantr |
|
| 4 |
|
m1dvdsndvds |
|
| 5 |
4
|
imp |
|
| 6 |
|
eqid |
|
| 7 |
6
|
modprminv |
|
| 8 |
|
simpr |
|
| 9 |
8
|
eqcomd |
|
| 10 |
7 9
|
syl |
|
| 11 |
1 3 5 10
|
syl3anc |
|
| 12 |
|
modprm1div |
|
| 13 |
12
|
biimpar |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
zre |
|
| 17 |
16
|
ad2antlr |
|
| 18 |
|
prmm2nn0 |
|
| 19 |
18
|
anim1ci |
|
| 20 |
19
|
adantr |
|
| 21 |
|
zexpcl |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
prmnn |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantr |
|
| 26 |
22 25
|
zmodcld |
|
| 27 |
26
|
nn0zd |
|
| 28 |
23
|
nnrpd |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
modmulmod |
|
| 32 |
17 27 30 31
|
syl3anc |
|
| 33 |
19 21
|
syl |
|
| 34 |
33 24
|
zmodcld |
|
| 35 |
34
|
nn0cnd |
|
| 36 |
35
|
mullidd |
|
| 37 |
36
|
oveq1d |
|
| 38 |
37
|
adantr |
|
| 39 |
|
reexpcl |
|
| 40 |
16 18 39
|
syl2anr |
|
| 41 |
40 29
|
jca |
|
| 42 |
41
|
adantr |
|
| 43 |
|
modabs2 |
|
| 44 |
42 43
|
syl |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
15 32 45
|
3eqtr3d |
|
| 47 |
11 46
|
eqtr2d |
|
| 48 |
47
|
ex |
|