Metamath Proof Explorer


Theorem poxp3

Description: Triple Cartesian product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
poxp3.1 φ R Po A
poxp3.2 φ S Po B
poxp3.3 φ T Po C
Assertion poxp3 φ U Po A × B × C

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 poxp3.1 φ R Po A
3 poxp3.2 φ S Po B
4 poxp3.3 φ T Po C
5 el2xptp p A × B × C a A b B c C p = a b c
6 neirr ¬ a a
7 neirr ¬ b b
8 neirr ¬ c c
9 6 7 8 3pm3.2ni ¬ a a b b c c
10 9 intnan ¬ a R a a = a b S b b = b c T c c = c a a b b c c
11 simp3 a A b B c C a A b B c C a R a a = a b S b b = b c T c c = c a a b b c c a R a a = a b S b b = b c T c c = c a a b b c c
12 10 11 mto ¬ a A b B c C a A b B c C a R a a = a b S b b = b c T c c = c a a b b c c
13 breq12 p = a b c p = a b c p U p a b c U a b c
14 13 anidms p = a b c p U p a b c U a b c
15 1 xpord3lem a b c U a b c a A b B c C a A b B c C a R a a = a b S b b = b c T c c = c a a b b c c
16 14 15 bitrdi p = a b c p U p a A b B c C a A b B c C a R a a = a b S b b = b c T c c = c a a b b c c
17 12 16 mtbiri p = a b c ¬ p U p
18 17 rexlimivw c C p = a b c ¬ p U p
19 18 rexlimivw b B c C p = a b c ¬ p U p
20 19 rexlimivw a A b B c C p = a b c ¬ p U p
21 5 20 sylbi p A × B × C ¬ p U p
22 21 adantl φ p A × B × C ¬ p U p
23 3reeanv a A d A g A b B c C p = a b c e B f C q = d e f h B i C r = g h i a A b B c C p = a b c d A e B f C q = d e f g A h B i C r = g h i
24 3reeanv c C f C i C p = a b c q = d e f r = g h i c C p = a b c f C q = d e f i C r = g h i
25 24 rexbii h B c C f C i C p = a b c q = d e f r = g h i h B c C p = a b c f C q = d e f i C r = g h i
26 25 2rexbii b B e B h B c C f C i C p = a b c q = d e f r = g h i b B e B h B c C p = a b c f C q = d e f i C r = g h i
27 3reeanv b B e B h B c C p = a b c f C q = d e f i C r = g h i b B c C p = a b c e B f C q = d e f h B i C r = g h i
28 26 27 bitri b B e B h B c C f C i C p = a b c q = d e f r = g h i b B c C p = a b c e B f C q = d e f h B i C r = g h i
29 28 rexbii g A b B e B h B c C f C i C p = a b c q = d e f r = g h i g A b B c C p = a b c e B f C q = d e f h B i C r = g h i
30 29 2rexbii a A d A g A b B e B h B c C f C i C p = a b c q = d e f r = g h i a A d A g A b B c C p = a b c e B f C q = d e f h B i C r = g h i
31 el2xptp q A × B × C d A e B f C q = d e f
32 el2xptp r A × B × C g A h B i C r = g h i
33 5 31 32 3anbi123i p A × B × C q A × B × C r A × B × C a A b B c C p = a b c d A e B f C q = d e f g A h B i C r = g h i
34 23 30 33 3bitr4ri p A × B × C q A × B × C r A × B × C a A d A g A b B e B h B c C f C i C p = a b c q = d e f r = g h i
35 simpr1l φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A b B c C
36 simpr2r φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i g A h B i C
37 simp1l1 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A
38 simp2l1 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d A
39 simp2r1 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i g A
40 37 38 39 3jca a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A d A g A
41 potr R Po A a A d A g A a R d d R g a R g
42 2 40 41 syl2an φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R d d R g a R g
43 42 expd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R d d R g a R g
44 breq1 a = d a R g d R g
45 44 biimprd a = d d R g a R g
46 45 a1i φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = d d R g a R g
47 simpll1 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R d a = d
48 47 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R d a = d
49 48 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R d a = d
50 43 46 49 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d R g a R g
51 orc a R g a R g a = g
52 50 51 syl6 φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d R g a R g a = g
53 breq2 d = g a R d a R g
54 equequ2 d = g a = d a = g
55 53 54 orbi12d d = g a R d a = d a R g a = g
56 49 55 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d = g a R g a = g
57 simprl1 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d R g d = g
58 57 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d R g d = g
59 58 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d R g d = g
60 52 56 59 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R g a = g
61 simp1l2 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b B
62 simp2l2 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e B
63 simp2r2 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i h B
64 61 62 63 3jca a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b B e B h B
65 potr S Po B b B e B h B b S e e S h b S h
66 3 64 65 syl2an φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S e e S h b S h
67 66 expd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S e e S h b S h
68 breq1 b = e b S h e S h
69 68 biimprd b = e e S h b S h
70 69 a1i φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = e e S h b S h
71 simpll2 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S e b = e
72 71 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S e b = e
73 72 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S e b = e
74 67 70 73 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e S h b S h
75 orc b S h b S h b = h
76 74 75 syl6 φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e S h b S h b = h
77 breq2 e = h b S e b S h
78 equequ2 e = h b = e b = h
79 77 78 orbi12d e = h b S e b = e b S h b = h
80 73 79 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e = h b S h b = h
81 simprl2 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e S h e = h
82 81 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e S h e = h
83 82 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e S h e = h
84 76 80 83 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b S h b = h
85 simp1l3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c C
86 simp2l3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f C
87 simp2r3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i i C
88 85 86 87 3jca a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c C f C i C
89 potr T Po C c C f C i C c T f f T i c T i
90 4 88 89 syl2an φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T f f T i c T i
91 90 expd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T f f T i c T i
92 breq1 c = f c T i f T i
93 92 biimprd c = f f T i c T i
94 93 a1i φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = f f T i c T i
95 simpll3 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T f c = f
96 95 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T f c = f
97 96 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T f c = f
98 91 94 97 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f T i c T i
99 orc c T i c T i c = i
100 98 99 syl6 φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f T i c T i c = i
101 breq2 f = i c T f c T i
102 equequ2 f = i c = f c = i
103 101 102 orbi12d f = i c T f c = f c T i c = i
104 97 103 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f = i c T i c = i
105 simprl3 a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f T i f = i
106 105 3ad2ant3 a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f T i f = i
107 106 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f T i f = i
108 100 104 107 mpjaod φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c T i c = i
109 60 84 108 3jca φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R g a = g b S h b = h c T i c = i
110 simp3rr a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d g e h f i
111 110 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d g e h f i
112 59 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g d R g d = g
113 breq1 a = g a R d g R d
114 equequ1 a = g a = d g = d
115 equcom g = d d = g
116 114 115 bitrdi a = g a = d d = g
117 113 116 orbi12d a = g a R d a = d g R d d = g
118 49 117 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g g R d d = g
119 118 imp φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g g R d d = g
120 ordir d R g g R d d = g d R g d = g g R d d = g
121 112 119 120 sylanbrc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g d R g g R d d = g
122 2 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i R Po A
123 38 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d A
124 39 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i g A
125 po2nr R Po A d A g A ¬ d R g g R d
126 122 123 124 125 syl12anc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i ¬ d R g g R d
127 126 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g ¬ d R g g R d
128 121 127 orcnd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g d = g
129 128 ex φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a = g d = g
130 129 necon3d φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d g a g
131 83 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h e S h e = h
132 breq1 b = h b S e h S e
133 equequ1 b = h b = e h = e
134 equcom h = e e = h
135 133 134 bitrdi b = h b = e e = h
136 132 135 orbi12d b = h b S e b = e h S e e = h
137 73 136 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h h S e e = h
138 137 imp φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h h S e e = h
139 ordir e S h h S e e = h e S h e = h h S e e = h
140 131 138 139 sylanbrc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h e S h h S e e = h
141 3 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i S Po B
142 62 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e B
143 63 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i h B
144 po2nr S Po B e B h B ¬ e S h h S e
145 141 142 143 144 syl12anc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i ¬ e S h h S e
146 145 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h ¬ e S h h S e
147 140 146 orcnd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h e = h
148 147 ex φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i b = h e = h
149 148 necon3d φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i e h b h
150 107 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i f T i f = i
151 breq1 c = i c T f i T f
152 equequ1 c = i c = f i = f
153 equcom i = f f = i
154 152 153 bitrdi c = i c = f f = i
155 151 154 orbi12d c = i c T f c = f i T f f = i
156 97 155 syl5ibcom φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i i T f f = i
157 156 imp φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i i T f f = i
158 ordir f T i i T f f = i f T i f = i i T f f = i
159 150 157 158 sylanbrc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i f T i i T f f = i
160 4 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i T Po C
161 86 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f C
162 87 adantl φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i i C
163 po2nr T Po C f C i C ¬ f T i i T f
164 160 161 162 163 syl12anc φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i ¬ f T i i T f
165 164 adantr φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i ¬ f T i i T f
166 159 165 orcnd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i f = i
167 166 ex φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i c = i f = i
168 167 necon3d φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i f i c i
169 130 149 168 3orim123d φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i d g e h f i a g b h c i
170 111 169 mpd φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a g b h c i
171 109 170 jca φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a R g a = g b S h b = h c T i c = i a g b h c i
172 35 36 171 3jca φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A b B c C g A h B i C a R g a = g b S h b = h c T i c = i a g b h c i
173 172 ex φ a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A b B c C g A h B i C a R g a = g b S h b = h c T i c = i a g b h c i
174 breq12 p = a b c q = d e f p U q a b c U d e f
175 174 3adant3 p = a b c q = d e f r = g h i p U q a b c U d e f
176 1 xpord3lem a b c U d e f a A b B c C d A e B f C a R d a = d b S e b = e c T f c = f a d b e c f
177 175 176 bitrdi p = a b c q = d e f r = g h i p U q a A b B c C d A e B f C a R d a = d b S e b = e c T f c = f a d b e c f
178 breq12 q = d e f r = g h i q U r d e f U g h i
179 178 3adant1 p = a b c q = d e f r = g h i q U r d e f U g h i
180 1 xpord3lem d e f U g h i d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i
181 179 180 bitrdi p = a b c q = d e f r = g h i q U r d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i
182 177 181 anbi12d p = a b c q = d e f r = g h i p U q q U r a A b B c C d A e B f C a R d a = d b S e b = e c T f c = f a d b e c f d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i
183 an6 a A b B c C d A e B f C a R d a = d b S e b = e c T f c = f a d b e c f d A e B f C g A h B i C d R g d = g e S h e = h f T i f = i d g e h f i a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i
184 182 183 bitrdi p = a b c q = d e f r = g h i p U q q U r a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i
185 breq12 p = a b c r = g h i p U r a b c U g h i
186 185 3adant2 p = a b c q = d e f r = g h i p U r a b c U g h i
187 1 xpord3lem a b c U g h i a A b B c C g A h B i C a R g a = g b S h b = h c T i c = i a g b h c i
188 186 187 bitrdi p = a b c q = d e f r = g h i p U r a A b B c C g A h B i C a R g a = g b S h b = h c T i c = i a g b h c i
189 184 188 imbi12d p = a b c q = d e f r = g h i p U q q U r p U r a A b B c C d A e B f C d A e B f C g A h B i C a R d a = d b S e b = e c T f c = f a d b e c f d R g d = g e S h e = h f T i f = i d g e h f i a A b B c C g A h B i C a R g a = g b S h b = h c T i c = i a g b h c i
190 173 189 syl5ibrcom φ p = a b c q = d e f r = g h i p U q q U r p U r
191 190 rexlimdvw φ i C p = a b c q = d e f r = g h i p U q q U r p U r
192 191 rexlimdvw φ f C i C p = a b c q = d e f r = g h i p U q q U r p U r
193 192 rexlimdvw φ c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
194 193 rexlimdvw φ h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
195 194 rexlimdvw φ e B h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
196 195 rexlimdvw φ b B e B h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
197 196 rexlimdvw φ g A b B e B h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
198 197 rexlimdvw φ d A g A b B e B h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
199 198 rexlimdvw φ a A d A g A b B e B h B c C f C i C p = a b c q = d e f r = g h i p U q q U r p U r
200 34 199 biimtrid φ p A × B × C q A × B × C r A × B × C p U q q U r p U r
201 200 imp φ p A × B × C q A × B × C r A × B × C p U q q U r p U r
202 22 201 ispod φ U Po A × B × C