Metamath Proof Explorer


Theorem pp0ex

Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993)

Ref Expression
Assertion pp0ex V

Proof

Step Hyp Ref Expression
1 pwpw0 𝒫 =
2 p0ex V
3 2 pwex 𝒫 V
4 1 3 eqeltrri V