Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
ppi1
Next ⟩
cht1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ppi1
Description:
The prime-counting function
ppi
at
1
.
(Contributed by
Mario Carneiro
, 21-Sep-2014)
Ref
Expression
Assertion
ppi1
⊢
π
_
⁡
1
=
0
Proof
Step
Hyp
Ref
Expression
1
1z
⊢
1
∈
ℤ
2
ppival2
⊢
1
∈
ℤ
→
π
_
⁡
1
=
2
…
1
∩
ℙ
3
1
2
ax-mp
⊢
π
_
⁡
1
=
2
…
1
∩
ℙ
4
1lt2
⊢
1
<
2
5
2z
⊢
2
∈
ℤ
6
fzn
⊢
2
∈
ℤ
∧
1
∈
ℤ
→
1
<
2
↔
2
…
1
=
∅
7
5
1
6
mp2an
⊢
1
<
2
↔
2
…
1
=
∅
8
4
7
mpbi
⊢
2
…
1
=
∅
9
8
ineq1i
⊢
2
…
1
∩
ℙ
=
∅
∩
ℙ
10
0in
⊢
∅
∩
ℙ
=
∅
11
9
10
eqtri
⊢
2
…
1
∩
ℙ
=
∅
12
11
fveq2i
⊢
2
…
1
∩
ℙ
=
∅
13
hash0
⊢
∅
=
0
14
12
13
eqtri
⊢
2
…
1
∩
ℙ
=
0
15
3
14
eqtri
⊢
π
_
⁡
1
=
0