Metamath Proof Explorer


Theorem ppi1

Description: The prime-counting function ppi at 1 . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppi1 π _ 1 = 0

Proof

Step Hyp Ref Expression
1 1z 1
2 ppival2 1 π _ 1 = 2 1
3 1 2 ax-mp π _ 1 = 2 1
4 1lt2 1 < 2
5 2z 2
6 fzn 2 1 1 < 2 2 1 =
7 5 1 6 mp2an 1 < 2 2 1 =
8 4 7 mpbi 2 1 =
9 8 ineq1i 2 1 =
10 0in =
11 9 10 eqtri 2 1 =
12 11 fveq2i 2 1 =
13 hash0 = 0
14 12 13 eqtri 2 1 = 0
15 3 14 eqtri π _ 1 = 0