Metamath Proof Explorer


Theorem ppi1i

Description: Inference form of ppiprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m M 0
ppi1i.n N = M + 1
ppi1i.p π _ M = K
ppi1i.1 N
Assertion ppi1i π _ N = K + 1

Proof

Step Hyp Ref Expression
1 ppi1i.m M 0
2 ppi1i.n N = M + 1
3 ppi1i.p π _ M = K
4 ppi1i.1 N
5 2 fveq2i π _ N = π _ M + 1
6 1 nn0zi M
7 2 4 eqeltrri M + 1
8 ppiprm M M + 1 π _ M + 1 = π _ M + 1
9 6 7 8 mp2an π _ M + 1 = π _ M + 1
10 3 oveq1i π _ M + 1 = K + 1
11 5 9 10 3eqtri π _ N = K + 1