Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
ppi2i
Next ⟩
ppi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ppi2i
Description:
Inference form of
ppinprm
.
(Contributed by
Mario Carneiro
, 21-Sep-2014)
Ref
Expression
Hypotheses
ppi1i.m
⊢
M
∈
ℕ
0
ppi1i.n
⊢
N
=
M
+
1
ppi1i.p
⊢
π
_
⁡
M
=
K
ppi2i.1
⊢
¬
N
∈
ℙ
Assertion
ppi2i
⊢
π
_
⁡
N
=
K
Proof
Step
Hyp
Ref
Expression
1
ppi1i.m
⊢
M
∈
ℕ
0
2
ppi1i.n
⊢
N
=
M
+
1
3
ppi1i.p
⊢
π
_
⁡
M
=
K
4
ppi2i.1
⊢
¬
N
∈
ℙ
5
2
fveq2i
⊢
π
_
⁡
N
=
π
_
⁡
M
+
1
6
1
nn0zi
⊢
M
∈
ℤ
7
2
eleq1i
⊢
N
∈
ℙ
↔
M
+
1
∈
ℙ
8
4
7
mtbi
⊢
¬
M
+
1
∈
ℙ
9
ppinprm
⊢
M
∈
ℤ
∧
¬
M
+
1
∈
ℙ
→
π
_
⁡
M
+
1
=
π
_
⁡
M
10
6
8
9
mp2an
⊢
π
_
⁡
M
+
1
=
π
_
⁡
M
11
5
10
3
3eqtri
⊢
π
_
⁡
N
=
K