Metamath Proof Explorer


Theorem ppi2i

Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m M 0
ppi1i.n N = M + 1
ppi1i.p π _ M = K
ppi2i.1 ¬ N
Assertion ppi2i π _ N = K

Proof

Step Hyp Ref Expression
1 ppi1i.m M 0
2 ppi1i.n N = M + 1
3 ppi1i.p π _ M = K
4 ppi2i.1 ¬ N
5 2 fveq2i π _ N = π _ M + 1
6 1 nn0zi M
7 2 eleq1i N M + 1
8 4 7 mtbi ¬ M + 1
9 ppinprm M ¬ M + 1 π _ M + 1 = π _ M
10 6 8 9 mp2an π _ M + 1 = π _ M
11 5 10 3 3eqtri π _ N = K